In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Evaluation of COMSOL as a Tool for Pinpointing Moisture Entering Locations From Inside Surface Moisture

J. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

The location and nature of the moisture leakages are sometimes difficult to detect. Moreover, the relation between observed inside surface moisture patterns and where the moisture enters the construction is often not clear. The objective of this paper is to investigate inverse modeling techniques as a tool for the detection of moisture leakage locations in building constructions from inside ...

FEM-Investigations Of Superconductor/Ferromagnet Heterostructures: A Compliance Test Between Various Models

P. Krüger[1], F. Grilli[1], Y. Genenko[2], and R. Brambilla[2]
[1]Karlsruhe Institute of Technology, Germany
[2]Technical University Darmstadt, Germany, ERSE Spa, Milan, Italy

In recent years, a number of numerical and finite-element-methods in particular - some implemented in COMSOL - have been developed to investigate various properties of superconducting materials. Following converse conclusions by different models regarding similar physical phenomena, the consistency of these models has been of increased interest. In this publication the accordance of an ...

Simulation of the Mechanical Stability of Inkjet-Printed Hierarchical Microsieves

S.F. Jahn[1,3], S. Ebert[2], M. Hackert[1], W.A. Goedel[2], R.R. Baumann[3], and A. Schubert[1,4]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Chemnitz University of Technology, Physical Chemistry, Germany
[3]Chemnitz University of Technology, Professorship for Digital Printing and Imaging, Germany
[4]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Porous membranes with pore sizes in the micrometer scale are required in many micro systems dedicated to biological and chemical applications. If their thickness is in the same dimension like the pore diameter they are called microsieves. On the one hand, a thin membrane guarantees a small flow resistance but on the other hand the mechanical strength is reduced. We developed a process which ...

Modeling Arterial Drug Transport From Drug-eluting Stents: Effect of Blood Flow on the Concentration Distribution Close to the Endothelial Surface

F. Bozsak, J.-M. Chomaz, and A. I. Barakat
LadHyX, Ecole Polytechnique
Palaiseau, France

Drug-eluting stents (DES) are commonly used for treating coronary atherosclerosis. Despite the broad effectiveness of DES, ~5% of treated patients experience complications including in-stent restenosis and late-stent thrombosis. Furthermore, drugs used in DES not only inhibit proliferation of smooth muscle cells but also affect re-endothelialization. We have developed a computational model ...

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in distinct areas to commonly occurring diseases. According to different angles of the acting chewing force, ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

High Field Magnetic Diffusion into Nonlinear Ferrimagnetic Materials

J-W. Braxton Bragg[1], J. Dickens[1], A. Neuber[1], and K. Long[2]
[1]Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, TX
[2]Dept. of Mathematics, Texas Tech University, Lubbock, TX

Ferrimagnetic based, coaxial nonlinear transmission lines (NLTLs) provide a means to generate sub-nanosecond risetime pulses (from nano-second input pulses) or megawatt level high power microwave oscillations, depending on the geometry, material, and external bias fields. This investigation uses the commercially available, finite element solver COMSOL to provide insight into pulse behavior. ...

3D Simulations of an Injection Test Done Into an Unsaturated Porous and Fractured Limestone

A. Thoraval[1], Y. Guglielmi[2], F. Cappa[3]
[1]INERIS, Nancy, France
[2]CEREGE, Aix-en-Provence, France
[3]GEOAZUR, Valbonne, France

We have developed a numerical model to represent the effect of injection test in unsaturated porous and fractured rock mass. The test was conducted at the LSBB (Laboratoire Souterrain à Bas Bruit) site close to Rustrel, Vaucluse, France in the field of the French ANR project called “HPPP-CO2”. The results underline the impact of fractures on the hydro-mechanical response of the rock-mass. Indeed ...

Coupled Hydrochemical Modeling for the Optimal Design of an In-situ Redox Experiment

P. Trinchero[1], J. Molinero[1], G. Román-Ross[1], A. Nardi[1], L.M. De Vries[1], T. Karvonen[2], P. Pitkänen[3]
[1]Amphos 21, Barcelona, Spain
[2]WaterHope, Helsinki, Finland
[3]Posiva, Eurajoki, Finland

In this work, we present a number of scoping calculations that have been carried out to design an in-situ redox experiment (Figure 1) focused on assessing potential changes in the pH and redox conditions and in the buffering capacity of the Olkiluoto bedrock (i.e. the site for the Finnish spent fuel repository). A characteristic of these models lies in the need to integrate prior information, ...

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical model of the SOFC and use of specifically designed software programs that allows the user to manipulate the ...

2701 - 2710 of 3222 First | < Previous | Next > | Last