In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field

I. Terechkine[1], T. Khabiboulline[1], D. Sergatskov[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Performance degradation of a superconducting RF cavity after quenching in an external magnetic field was calculated using COMSOL. This degradation is due to the increased resistance of a superconducting surface with trapped magnetic flux. The amount of the trapped flux depends on the size of the normally-conducting opening that develops in the superconducting wall of a cavity during quenching. ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Application of Numerical Simulation in Geotechnical Engineering

Dr. Meen-Wah Gui[1]
[1]Department of Civil Engineering, National Taipei University of Technology, Taipei, Taiwan

In this work, COMSOL Multiphysics was used to develop a model to investigate the degree of saturation in sloped terrain. The model was validated via laboratory experiments incorporating Lan’s man-made rainfall slope model test. The validated model was used in an actual case study to simulate the Maokong Landslide.

Convective Cooling of Electronic Components - new

J. S. Crompton[1], H. Singh[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, LLC, Columbus, OH, USA

In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating temperature of devices result. To maintain operation and long term performance device temperature must be ...

Optimization Module Enables Hybrid Experimental-Numerical Algorithm for 3D Particle Image Velocimetry - new

M. Sigurdson[1], C. Meinhart[1], I. Mezic[1]
[1]Department of Mechanical Engineering, University of California - Santa Barbara, Santa Barbara, CA, USA

In our study of chaotic mixing, 3D velocity measurements (u,v,w) are required for evaluation of a micro mixer using a mix-prediction algorithm. The hybrid approach presented here combines 2D measurements, an imperfect numerical model, and appropriate fitting parameters. Because our purpose is a measurement, rather than development of a physically accurate and predictive model, it not necessary ...

Purcell Effect via Numerical Simulation - new

I. Zabkov [1], V. Klimov[1], A. Pavlov[1], D. Guzatov[2]
[1]All-Russia Research Institute of Automatics (VNIIA), Moscow, Russia
[2]Yanka Kupala State University of Grodno, Grodno, Belarus

As it is known nano-sized emitters (such as atoms, quantum dots and point defects in diamonds) interaction with nano-environment leads to drastic changes of their decay rate and therefore lifetime (Purcell effect). To calculate the influence in general one needs to solve equations of quantum electrodynamics. However in weak interaction limit these emitters can be considered as point electric ...

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations - new

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole.

Vibro-Acoustic Analysis of Motorcycle Engine Under Combustion Load - new

U. Mohite[1], N. Bhatia[1]
[1]Mahindra Two Wheelers Ltd., Pune, Maharashtra, India

Noise radiated from automotive engine is gaining significance in order to meet regulations concerning noise levels and to fulfill customer demands of quiet products. In IC engines, combustion pressure is one of the major excitations which is transmitted through powertrain to the casings and radiates noise. Structural and acoustical modeling and simulation methods can be used to predict and ...

Optimization and Simulation of MEMS Based Thermal Sensor for Performance of Transformer Oil

V. Vijayalakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

In this work, a bimetallic strip based thermal sensor was designed using MEMS module of COMSOL Multiphysics® software to monitor the temperature rise in insulating oil which was used as coolant in transformers. The bimetallic strip was designed with different shapes such as cylindrical, rectangle, square & conical and different compositions such as Al/Steel Alloy and Fe/Cu which can withstand ...

Design, Simulation, and Fabrication of Thermal Angular Accelerometers

H. Alrowais [1],
[1] School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

This abstract introduces a sensor design for detecting angular acceleration in a single plane using thermal convection. The working principal of the device is based on probing temperature profile changes along a micro-torus caused by angular acceleration. By properly choosing the locations of the heaters as well as the temperature sensors, the output signal will correlate to in-plane angular ...

2701 - 2710 of 3394 First | < Previous | Next > | Last