In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, such as in the production of oil and gas, fluid viscometers, centrifugally-driven separation processes, ...

Numerical Study and Simulation in COMSOL Multiphysics of the Dilution Process during Dust Sampling in Dry Machining

B. Wenga-Ntcheping[1], A. Djebara[1], R. Kamguem[1], J. Kouam[1], V. Songmene[1]
[1]University of Quebec-École de Technologie Supérieure, Montreal, Canada

Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine particles produced during material cutting, passed through the dilution of high particle concentration (number, ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

COMSOL Multiphysics® Software and PV: A Unified Platform for Numerical Simulation of Solar Cells and Modules

M. Nardone [1],
[1] Bowling Green State University, Bowling Green, OH, USA

Introduction: Existing solar cell (photovoltaic, PV) device simulation software is either open source with limited capabilities (1D only) [1,2] or extremely expensive with obscure functionality [3]. PV researchers need an accessible and versatile simulation tool to optimize existing technologies and to reduce the time from concept to prototype for new technologies. This work demonstrates how ...

Modeling and Simulation of Drug Release Through Polymer Hydrogels

V. Runkana[1], S. Maheshwari[1], S. Cherlo[1], RSR Thavva[1]
[1]Tata Research Development and Design Centre, Tata Consultancy Services Ltd., Pune, Maharashtra, India

Polymer hydrogels are commonly used as carriers or vehicles for the controlled release of drugs, primarily because of their bio-compatibility and because rates of drug release can be controlled by manipulating polymer properties like molecular weight, cross linking ratio, etc. Drugs can be released for prolonged periods of time through polymer hydrogels [1, 2]. Sustained drug release may ...

Simulation of Supercritical Fluid Extraction Process

P. Katiyar [1], S. Khanam [1],
[1] Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

This paper deals with the simulation of mathematical model for supercritical extraction. Reverchon, 1996 extracted sage oil using supercritical extraction method from sage leaves at 9 MPa and 50 ᵒC. Four mean size of sage leaves ranging from 0.25 to 3.10 mm were taken for extraction with other experimental conditions and process parameters. Experimental results were fitted in the model developed ...

The Effects of the Contact Angle on the Dynamics of Water Droplet Impingement

J. Hu [1], X. Huang [2], X. Xiong [1], K. T. Wan [2],
[1] University of Bridgeport, Bridgeport, CT, USA
[2] Northeastern University, Boston, MA, USA

INTRODUCTION The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications, such as rain drops on automobile windshields, inkjet deposition and metal deposition in manufacturing processes, spray cooling of electronics, and spray coating for various applications. The droplet can spread, splash, and rebound after hitting a solid surface. Contact ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting plates. The battery performance depends upon several parameters and its operating conditions. In this work we developed a model for a lithium iron phosphate battery and validated our results with experimental charge-discharge curves. We however note ...

Simulating the Electrical Double Layer Capacitance

G. Zhang
Clemson University, Clemson, SC, USA

When a solid surface makes contact with a liquid medium, an electrical double layer (EDL) structure forms spontaneously through thermodynamic interaction between electrons and ions. In this study, we developed a computational model using commercial finite element analysis package COMSOL Multiphysics to simulate the double layer structure and quantify the EDL capacitance for the first time. In ...

First
Previous
1–10 of 426