Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.


Visualizza gli articoli presentati alla COMSOL Conference 2020

Structural Mechanics and Thermal Stressesx

Analysis of a Plasma-Mediated Photoacoustic Response From Plasmonic Nanoparticles in Ultrashort Regime

A. Hatef [1], B. Darvish [1], A. Dagallier [2], C. Boutopoulos [2], M. Meunier [2],
[1] Nipissing University, North Bay, ON, Canada
[2] École Polytechnique de Montréal, Montréal, QC, Canada

Over the last decade, plasmonic nanoparticles (PNPs) have received growing interest as exogenous contrast agents in the thermal expansion based photoacoustic (PA) imaging technique in biomedical applications [1]. Such functionality is due to the localized surface plasmon resonance (LSPR) ... Per saperne di più

Design and Analysis of a Three-DOF Piezoelectric Vibration Energy Harvester

R. T. P. Reddy [1], X. Xiong [2], J. Hu [3],
[1] University of Bridgeport, Bridgeport, CT, USA
[2] Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[3] Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

Introduction: Vibration energy harvester can convert mechanical vibration energy into electrical energy and store it in battery for later use. It can create clean renewable energy from vibration movements such as walking, jumping, running, etc. This can convert energy previously wasted ... Per saperne di più

COMSOL Multiphysics® Software Activities Within the Research Reactors Division of Oak Ridge National Laboratory

J. D. Freels [1], P. K. Jain [1], C. J. Hurt [2], F. G. Curtis [1], M. W. Crowell [1], E. L. Popov [1],
[1] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2] University of Tennessee, Knoxville, TN, USA

INTRODUCTION Our group at ORNL started using COMSOL Multiphysics® software shortly after version 3.0 was released in the Spring of 2004. After 11 years and several releases, the application usage has grown along with number of licenses we are responsible for. This paper will broaden ... Per saperne di più

Thermal Stresses in Functionally Graded Metal-Ceramic Plates

E. Gutierrez-Miravete [1],
[1] Rensselaer at Hartford, Hartford, CT, USA

Functionally graded composite materials are attracting interest among design engineers since structural component properties can be designed and customized into finished parts through processing. The controlled variable is the concentration of reinforcing particles at various points ... Per saperne di più

Uncertainty of FEM Solutions Using a Nonlinear Least Squares and Design of Experiments Approach

J. T. Fong [1], N. A. Heckert [1], J. J. Filliben [1], P. V. Marcal [2], R. Rainsberger [3]
[1] National Institute of Standards and Technology, Gaithersburg, MD, USA
[2] MPACT Corp., Oak Park, CA, USA
[3] XYZ Scientific Applications, Inc., Livermore, CA, USA

Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to ... Per saperne di più

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from medical field to space explorations. They convert physical parameters such as temperature, pressure, humidity etc: - into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of ... Per saperne di più

Analysis of Cost Effective Vertical Axis Wind Turbine (CEVAWT)

H. Shaikh[1], A. Arjun[1], R. Kumbhar[2]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India
[2]WIL Walchandnagar, Pandharpur, Maharashtra, India

Wind turbines are the conventional type of energy source. The main focus of this work is the analysis and fabrication of cost effective VAWT. Cost of the turbine is reduced by low cost material and minimizing its total weight. There are two main types of the wind turbines i.e. Horizontal ... Per saperne di più

Determination of the Fundamental Resonant Modes of a Polysilicon H-Beam Using COMSOL Multiphysics® Software

T. Thomas[1], M. Sundaram[1], R. Bejam[1]
[1]Birla Institute of Technology and Science, Pilani - Pilani Campus, Rajasthan, India

A Polysilicon H-beam is a micro-machined structure consisting of two primary members connected by a third member of much lower width and much greater aspect ratio. This structure exhibits interesting vibration behavior at specific frequencies which are known as resonant modes. A ‘mode’ ... Per saperne di più

Optimization of Smart Diaphragm Material for Pressure Sensor in Ventilators

M. Algappan[1], P. C. Chakravarthi[1], R. Keerthana[1], S. Mangayarkarasi[1], A. Kandaswamy[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

A medical ventilator is an imperative device used to save life by delivering an assortment of air and oxygen into and out of the patients’ lungs to administer breathing or to assist obligatory breathing. The commercially available diaphragm based pressure sensors made up of silicon ... Per saperne di più

MEMS Based Silicon Load Cell for Weighing Applications

D. Chauhan[1], B. D. Pant[2]
[1]Kurukshetra University, Kurukshetra, Haryana, India
[2]CSIR- Central Electronics Engineering Research Institute, Pilani, Rajasthan, India

Load cells are force sensors, which are used in weighing equipment. The objective of this work is to develop MEMS based load cell. In this work two different load cell designs were simulated. First design is based on compressing a meander like polysilicon strain gage for the measurement ... Per saperne di più