Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
In this paper it is shown how the equivalent circuit parameters of a MEMS resonator can be simply obtained from an eigenfrequency simulation. Additionally, it is demonstrated that the Q-factor as a result of support losses in a MEMS resonator can be determined using a matched boundary ... Per saperne di più
This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous ... Per saperne di più
An automated design tool using COMSOL Multiphysics 3.5a and a genetic algorithm was developed to improve the performance of a MEMS resonant mass sensor. The device was comprised of a fixed-free poly-silicon micro-cantilever beam with electrostatic actuation and capacitive sensing. The ... Per saperne di più
MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the ... Per saperne di più
COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically ... Per saperne di più
Manuel Collet is a member of the Department of Applied Mechanics of the FEMTO-ST Institute. He graduated with a degree in Mechanical Engineering from Ecole Centrale de Lyon in 1992 and obtained his PhD in 1996 about Active control of vibrating structures by mean of semi distributed ... Per saperne di più
Cantilever vibration modes were simulated with COMSOL Multiphysics. In the 1st approach the model consisted of an excitation piezo, a holder plate and a chip where the cantilever was mounted on. A sinusoidal voltage signal was applied to the piezo in the simulation, which resulted in ... Per saperne di più
Vibrations are an essential part of our day to day engineering environment, which happen in automobiles, avionics, machines, electric motors, structures, electronic equipments, etc. When a system is vibrating under higher frequencies leads to higher displacement, noise and heat ... Per saperne di più
This paper presents a FEA approach to estimate temperature rise and thermal stress experienced in PZT/Solid structure due to internal heat generation and dynamic excitation. The power dissipative density consumed by structural damping of the mass structure, internal heat generation due ... Per saperne di più
Cilia are slender micro-organelles (200 nm diameter, 10 µm long) that generate propagating waves to propel cells or move fluid. The cytoskeletal structure of the cilium (the axoneme) consists of 9 outer microtubule doublets and 2 central microtubule singlets. Outer doublets are connected ... Per saperne di più