Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the ... Per saperne di più
COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically ... Per saperne di più
This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous ... Per saperne di più
An automated design tool using COMSOL Multiphysics 3.5a and a genetic algorithm was developed to improve the performance of a MEMS resonant mass sensor. The device was comprised of a fixed-free poly-silicon micro-cantilever beam with electrostatic actuation and capacitive sensing. The ... Per saperne di più
MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the ... Per saperne di più
Manuel Collet is a member of the Department of Applied Mechanics of the FEMTO-ST Institute. He graduated with a degree in Mechanical Engineering from Ecole Centrale de Lyon in 1992 and obtained his PhD in 1996 about Active control of vibrating structures by mean of semi distributed ... Per saperne di più
Cantilever vibration modes were simulated with COMSOL Multiphysics. In the 1st approach the model consisted of an excitation piezo, a holder plate and a chip where the cantilever was mounted on. A sinusoidal voltage signal was applied to the piezo in the simulation, which resulted in ... Per saperne di più
Cilia are slender micro-organelles (200 nm diameter, 10 µm long) that generate propagating waves to propel cells or move fluid. The cytoskeletal structure of the cilium (the axoneme) consists of 9 outer microtubule doublets and 2 central microtubule singlets. Outer doublets are connected ... Per saperne di più
微波腔自旋电子学(Spin Cavitronics)是自旋电子学与腔量子电动力学之间的交叉领域。微波腔量子电动力学的应用之一就是利用光与物质的相互作用实现量子信息的处理,而自旋波在量子尺度下即是磁振子,是一种玻色子,磁振子与微波腔内的光子能够强耦合,实现信息在两种不同媒质中的交换。微波腔自旋电子学的一种典型的研究方法为将磁性小球置于微波腔中,通过调节施加在磁性小球上的外加磁场大小来使其与微波腔内的电磁波驻波模式(亦称为腔模)实现强耦合。这种自旋波与电磁波之间的相互作用(磁振子与光子的耦合)为自旋流的调控以及研究磁矩的非线性动力学行为提供了新的方法。在微波腔中 ... Per saperne di più
Introduction In this work, we will present an equation based technique for MOSFET simulation in COMSOL 5.4 and will discuss about the challenges faced in doing the same. The idea behind such a methodology is to demonstrate the coupling of the existing semiconductor equations with ... Per saperne di più