Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.


Visualizza gli articoli presentati alla COMSOL Conference 2020

Modeling Microfluidic Separations Using COMSOL Multiphysics

B.A. Finlayson[1], and R.A. Shaw[2]
[1]University of Washington, Seattle, WA, USA
[2]National Research Council of Canada, Winnipeg, MB, Canada

Infrared spectroscopy can be used to identify chemicals in a stream provided the signal is strong enough. A microfluidic device is modeled here with the objective of separating serum components so as to enhance the metabolite/protein concentration ratio. Serum contains creatinine (a ... Per saperne di più

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality ... Per saperne di più

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in ... Per saperne di più

Finite Element Analysis of Multilayer Transmission Lines for High-Speed Digital Interconnects

S.M. Musa, and M.N.O. Sadiku
Prairie View A&M University, Prairie View, TX, USA

In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed ... Per saperne di più

COMSOL Based Multiphysics Analysis Of Surface Roughness Effects On Capacitance In RF MEMS Varactors

D. Mondal[1], R. Mukherjee[2], D. Mukherjee[1], and C. RoyChaudhuri[1]
[1]Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University Shibpur, Howrah, West Bengal, India
[2]School of VLSI Technology, Bengal Engineering and Science University Shibpur, Howrah, West Bengal, India

In this paper, the effects of roughness in the surfaces of the plates caused due to nonuniform etching during their release and/or due to defects in the original wafer on the capacitance in RF-MEMS parallel plate varactors are analyzed. Capacitance extraction due to surface roughness has ... Per saperne di più

Modeling PIN Photodiodes

R.W. Pryor
Pryor Knowledge Systems Inc., Bloomfield Hills, MI, USA

This paper presents one approach to the modeling of an abrupt junction PIN photodiode light sensor using COMSOL Multiphysics software and the incorporated SPICE® capability. The current model is built using the capabilities of SPICE in COMSOL Multiphysics 4.0. This model demonstrates the ... Per saperne di più

Expanding Your Materials Horizons

R.W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The concept of virtual prototyping can be found linked to many different keywords in the literature: modeling, look-ahead problem solving, etc. This poster paper briefly discusses the potential real benefits that can be realized through pre-build cost savings, minimization of the number ... Per saperne di più

A Biological Gear in the Human Middle Ear

H. Cai, R.P. Jackson, C. Steele, and S. Puria
Stanford University, Stanford, CA, USA

To support high frequency transmission, the mammalian middle ear construction is unique. The middle ear bones are connected through two mobile joints, the malleus-incus joint (MIJ) and the incudostapedial joint (ISJ). These synovial joints, consisting of joint capsule and synovial fluid ... Per saperne di più

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a ... Per saperne di più

COMSOL Implementation for Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoirs

X. Zhang, A. Shapiro, and E.H. Stenby
Center for Energy Resources Engineering, Technical University of Denmark, Lyngby, Denmark

Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. ... Per saperne di più