In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modeling and Simulation of the Rapid and Automated Measurement of Biofuel Blending in a Microfluidic Device under Pressure Driven Flow using COMSOL Multiphysics®

Sanket Goel[1], Venkateswaran PS[1], Rahul Prajesh[2], Ajay Agarwal[2]
[1]University of Petroleum & Energy Studies, Bidholi, Prem Nagar, Dehradun, India
[2]CSIR - Central Electronics Engineering Research Institute,(CSIR-CEERI) Pilani, India

• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro-fluidic Device. • Design and Fabrication of a polymer Y-shaped Micro-fluidic Device to work as Micro-Viscometer for ...

Modeling of Directional Dependence in Nanowire Flow Sensor - new

A. Piyadasa[1,3], P. Gao[1,2,3]
[1]Department of Physics, University of Connecticut, Storrs, CT, USA
[2]Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
[3]Institute of Materials Sciences, University of Connecticut, Storrs, CT, USA

3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS Module for COMSOL Multiphysics® software. Change in resistivity tensor due to induced stress in the nanowire ...

Heat-Sink Solution through Artificial Nanodielectrics for LED Lighting Application

N. Badi[1], R. Mekala[2]
[1]Department of Physics, Center for Advanced Materials, University of Houston, Houston, TX, USA
[2]Department of Electrical & Computer Engineering, University of Houston, Houston, TX, USA

Thermally conducting but electrically insulating materials are needed for heat-sink LED lighting applications. We report on a cost effective and innovative method based on creating core-shell nanoparticles in polymer with aluminum (Al) nanoparticles as the high thermal conductivity core and ultrathin aluminum oxide (Al?O?) as a capping shell. The solid oxide shell around the Al core prevents ...

Design and Analysis of Stacked Micromirrors

S. Park, S. Chung, and J. Yeow

University of Waterloo, Systems Design Engineering, Waterloo, Ontario, Canada

A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, and biomedical image systems. In this paper, two stacked micromirrors are presented and analyzed to show ...

Phasefield Modeling of Ferroelectric Materials

Marc Kamlah
Head of the Mechanics of Materials Department, Forschungszentrum Karlsruhe, Germany

Outline of presentation: theory of phase-field modeling of ferroelectric materials parameter identification in free energy density finite element implementation: PDE form weak form periodic boundary conditions: electrical mechanical domain configurations intrinsic and extrinsic contributions to small signal properties ---------------------------------- Keynote speaker's biography ...

MEMS Structure for Energy Harvesting

S. Rabbani, P.K. Rathore, G. Ghosh, and B.S. Panwar
Indian Institute of Technology Delhi, New Delhi, India

In this paper, a piezoelectric cantilever is investigated using finite element analysis made possible by COMSOL Multiphysics for the generation of electrical energy. A micro power generator was designed to convert mechanical vibrations present in the environment to electrical power. The model was studied for different cantilever dimensions. The load resistor was optimized for obtaining maximum ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

FEM-Simulation of a Printed Acceleration Sensor with RF Readout Circuit

H. Schweiger[1], T. Göstenkors[1], R. Bau[1], D. Zielke[1]
[1]Dept. Engineering Sciences and Mathematics, University of Applied Sciences Bielefeld, Bielefeld, Germany

In this paper we want to figure out the development of a capacitive acceleration-sensor system with the FEM-Method. The sensor-system is in the position to detect accelerations in the range of ±20 g. Furthermore the sensor-element contains a printed RF-inductance, which is used for contactless data transfer. On the one hand the simulation of the L-C-oscillating circuit using the RF Module of ...

Tunable MEMS Capacitor for mm and μm Wave Generation

Arpita Das[1], Amrita Nandy[1], Sakuntala Mahapatra[1], Sk. Mohammed Ali[1], Minu samantary[1]
[1]National MEMS design centre ,Department of Electronics and Telecommunication, Trident Academy of Technology, Biju Pattnaik University of Technology , India

This paper demonstrates the design of a tunable MEMS capacitor with two plates (one movable and one fixed). The response time obtained is 5μs. The tunable capacitor plays an important role in RF circuits. We focus on a tunable capacitor simulated using COMSOL Multiphysics®. In an electrostatically tunable parallel plate capacitor, you can modify the distance between the two plates when the ...

Simulation of an AlN Thin Film Resonator for High Sensitivity Mass Sensors

M. Maitra [1], H. B. Nemade [1], S. Kundu [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The objective of this paper is to show the simulation of a piezoelectric thin film device and its application as a sensor. Piezoelectric aluminum nitride thin film clamped at two ends is simulated using COMSOL Multiphysics software. The device consists of the piezoelectric thin film suspended on a cavity etched on a silicon substrate. Two metal electrodes are placed at the two fixed sides of the ...