In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Simulation of MEMS Based Pressure Sensor for Diagnosing Sleep Disorders

J. Vijitha[1], S. S. Priya[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Sleep apnea is a type of sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. There is a need to diagnose sleep apnea since it leads to fluctuations in the oxygen level that in turn affect the heart rate and blood pressure. In order to detect this disorder, a Micro Electro Mechanical System (MEMS) based piezoelectric pressure sensor ...

Janus 颗粒自驱运动的数值模拟

崔海航 [1], 王雷磊 [1], 谭晓君 [1],
[1] 西安建筑科技大学,西安,陕西,中国

Janus 颗粒是由物理或化学性质不同的两部分所构成的颗粒的总称。由于其结构的特殊性以及自驱动特性使其在MEMS、药物传输等领域有着潜在的应用价值。本文基于COMSOL Mutiphysics® 4.3a 多物理场耦合模拟平台对不同形状的 Pt-SiO2 型 Janus 颗粒的在不同浓度 H2O2 溶液中的自扩散泳动进行了数值模拟,并进一步研究模拟了球形 Janus 颗粒的近壁面运动。

Modeling of Vibrating Atomic Force Microscope´s Cantilever within Different Frames of Reference

E. Kamau, and F. Voigt
University of Oldenburg, Germany

Cantilever vibration modes were simulated with COMSOL Multiphysics. In the 1st approach the model consisted of an excitation piezo, a holder plate and a chip where the cantilever was mounted on. A sinusoidal voltage signal was applied to the piezo in the simulation, which resulted in movements of the holder plate and finally led to the excitation of the cantilever. In the 2nd approach the model ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the ...

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

MEMS Structure for Energy Harvesting

S. Rabbani, P.K. Rathore, G. Ghosh, and B.S. Panwar
Indian Institute of Technology Delhi, New Delhi, India

In this paper, a piezoelectric cantilever is investigated using finite element analysis made possible by COMSOL Multiphysics for the generation of electrical energy. A micro power generator was designed to convert mechanical vibrations present in the environment to electrical power. The model was studied for different cantilever dimensions. The load resistor was optimized for obtaining maximum ...

MEMS Comb Drive Gap Reduction Beyond Minimum Feature Size: A Computational Study

N. Osonwanne, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to reduce the comb drive gap in micro electro mechanical systems (MEMS) beyond the minimum fabrication feature size. The benefit of reducing the gap space between comb drive fingers is to increase its sensitivity to changes in capacitance due to displacements. The minimum feature size of standard fabrication foundries is 2 microns. To reduce the gap beyond a ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler ...