Quick Search

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Modeling a Novel Shallow Ground Heat Exchanger

M. Bottarelli[1], M. Bortoloni[1]
[1]Università degli Studi di Ferrara, Dipartimento di Architettura, Ferrara, Italia

Ground Heat Exchangers (GHXs) are rarely installed horizontally in linked ground source heat pumps used for space conditioning, because their energetic performance is lower than in the vertical solution. However, the horizontal one holds several advantages: it is easy to carry out and upkeep, it is more compliant with environmental regulations, and interferes marginally with groundwater systems. ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, requiring modeling and ...

Smart Radiator Upgrade (Super Smart with Natural Gas)

E. Bozelie[1], P. Bruins[1]
[1]Saxion University Enschede, Enschede, The Netherlands

In heating upgrades, most attention is paid to the boiler. When upgrading to HR++-boilers (eff of 107%) however, difficulties may occur since the high efficiency boilers are designed for water temperatures around 40°C, while the old radiators are designed for water temperatures higher than 60°C. The resulting mismatch may lead to reduced performance, a larger carbon footprint and increased ...

Elastoplastic Modeling and Experimental Verification of Solder-Substrate Interaction - new

C. Karl[1], C. Slater[1], M. Strangwood[1], K. Tank[2], S. O'Connor[2]
[1]University of Birmingham, Birmingham, UK
[2]Strip Tinning Ltd, Birmingham, UK

Solders are typically used to join similar or dissimilar metals, referred to as substrates. In some cases solders are also used to join completely different classes of materials. For example, a joint between copper busbar and silicon solar cell represents a set of dissimilar substrates. In the formation of a solder-substrate couple, the system must have been subjected to at least a single ...

Estimation of Tungsten Melt-Zone Size During Transient Heat Loads - new

Y. Patil[1], S. S. Khirwadkar[1], S. Belsare[1]
[1]Institute for Plasma Research, Gandhinagar, Ahmedabad, India

Electron beam has a wide range of applications in the material processing and joining techniques. Apart from that, it has also been utilized to simulate steady as well as transient fusion reactor relevant heat loads. Transient heat load events spontaneously occur in the fusion reactor. Several hundred megawatt of power is dumped upon the plasma facing material surfaces for a very short ...

Thermal Simulation and Package Investigation of Wireless Gas Sensors

A. Paoli[1], L. Seminara[2], D.D. Caviglia[1], A. Garibbo[2], and M. Valle[1]

[1]Department of Biophysical and Electronic Engineering, University of Genova, Genova, Italy
[2]SELEX Communications S.p.A., Genova, Italy

Gas sensor arrays based on metal oxides operating at high temperature are commonly used in many application fields. They can operate on different principles and each sensor may show very different responses to the individual gases in the environment. Data coming from the array can be merged for reliable gas detection. One point which is common to the different sensors types is that the atmosphere ...

Control of Preheating Process of Casting Die as Distributed Parameter System

C. Belavý[1], G. Hulkó[1], K. Ondrejkovic[1], and P. Zajícek[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper distributed parameter system models in the form of lumped-input/distributed-output systems are introduced and modeling of temperature fields of the die in the benchmark casting plant is presented. Temperature fields were modeled and studied using a finite element method based software package COMSOL Multiphysics and numerical models in the form of a lumped-input/distributed-output ...

Modeling Joule Heating Effect on Lunar O2 Generation via Electrolytic Reduction

J. Dominguez[1], S. Poizeau[2], and L. Sibille[1]

[1]ASRC Aerospace Corporation, Kennedy Space Center, Fl, USA
[2]Massachusetts Institute of Technology, Cambridge, MA, USA

Kennedy Space Center is leading research work on lunar O2 generation via electrolytic reduction of regolith. The metal oxide present in regolith is dissociated into oxygen anions and metal cations leading to the generation of gaseous oxygen at the anode and liquid metal at the cathode. The authors have developed a 3D model using a rigorous approach to not only study the effect of Joule heating on ...

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. The ...