Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Estimativa do Fluxo de Calor em uma Ferramenta de Corte Durante um Processo de Usinagem com o Uso do Software COMSOL Multiphysics® e de Técnicas de Problemas Inversos - new

R. F. Brito[1], S. R. de Carvalho[2], S. M. M. de L. e Silva[1]
[1]Federal University of Itajubá - UNIFEI, Itabira, Minas Gerais, Brasil
[2]Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, Brasil

This work proposes the use of inverse problem techniques in connection with COMSOL to estimate the heat flux and the temperature field on a turning cutting tool in transient regime. The main purpose of the present work is to present the improvements performed in relation to the authors’ previous work to develop the complex geometry of a machining process. Specification function, which is an ...

Improving Heating Uniformity of Dried Fruit in RF Treatments for Pest Control: Model Development and Validation - new

B. Alfaifi[1], J. Tang[2], Y. Jiao[2], S. Wang[3], B. Rasco[2], S. Jiao[2], S. Sablani[2]
[1]King Saud University, Riyadh, Saudi Arabia
[2]Washington State University, Pullman, WA, USA
[3]Northwest A&F University, Yangling, Shaanxi, China

Non-uniform heating is one of the most important challenges during the development of radio frequency (RF) heat treatments for pest control. A computer simulation model using finite element–based COMSOL Multiphysics® software was developed to investigate the heating uniformity of raisins packed in a rectangular plastic container and treated using RF heating. The developed model was then ...

COMSOL Multiphysics® as a Tool to Increase Safety in the Handling of Acetylene Cylinders Involved in Fires

F. Ferrero[1], M. Beckmann-Kluge[1], and K. Holtappels[1]

[1]BAM Federal Institute for Materials Research and Testing Division II.1 “Gases, Gas Plants”, Berlin, Germany

In this paper a mathematical model for predicting the heating-up of an acetylene cylinder involved in a fire is presented. In the simulations polynomial functions were used to describe the temperature dependency of the thermal properties of the cylinder interior, which is a complex system composed by a solid porous material, a solvent and acetylene dissolved in it. Model equations covered heat ...

Use of COMSOL to Estimate the Thermal Properties and Kinetic Parameters for the Degradation of Anthocyanins in Grape Pomace

D.K. Mishra[1], and K.D. Dolan[1,2]
[1] Department of Biosystems and Agricultural Engineering, Michigan State University
[2] Department of Food Science and Human Nutrition, Michigan State University

Degradation of components in low-moisture and high-temperature food is difficult to model because of the temperature gradient and long heating time. A method was developed to estimate the thermal properties of grape pomace and the rate constant and activation energy of anthocyanin degredation.

Analysis of Heat Transfer and Phase Change in Laser-Assisted Direct Imprinting Processes

F. K. Chung, Y. L. Wang, C. H. Chen
Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung , Taiwan

In this study, a model cast in COMSOL Multiphysics has been developed for the analysis of heat transfer and phase change during laser-assisted direct imprinting processes. The features of this model include the employment of temperature-dependent thermal properties, the use of equivalent specific heat for the treatment of latent heat of fusion, automatically switching the thermal contact ...

Multiphysics Modeling of Radio-Frequency Cooking

M. Rayner
Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, Lund, Sweden

A radio frequency-based cooking process for a meat product was modeled using the Heat Transfer Module. Included wasa term for internal heat generation as generated by Joule heating caused by an applied electric field. The dielectric and thermal properties were implemented as a function of temperature. The resulting simulation showed good agreement with experimental end point temperature data from ...

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model

M. Zalesak, and V. Gerlich
Tomas Bata University in Zlin, Zlin, Czech Republic

The study presents first authors experience with COMSOL Multiphysics environment used as a possible modeling tool of thermal building behavior. The idea of the project was to gain thermal response to changed boundary conditions with the application of COMSOL environment as a modeling tool for 3D buildings or 3D building segments. The room as building segment was implemented in the COMSOL ...

Modeling System Dynamics in a MEMS-Based Stirling Cooler

D. Guo, A. McGaughey, G. Fedder, M. Lee, and S. Yao
Carnegie Mellon University
Pittsburgh, PA

Micro-scale devices based on the Stirling cycle are an attractive choice for chip- and board-level electronics. A new Stirling cycle micro-refrigeration system composed of arrays of silicon MEMS cooling elements has been designed. COMSOL is used to evaluate the thermal performance of the system. Simulation of compressible flow and heat transfer with a large deformed mesh has been successfully ...

Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

R. Tosh, and H. Chen-Mayer
NIST
Gaithersburg, MD

Accurate metrology of radiotherapeutic absorbed dose to water requires assessing the radiation induced temperature change. The most direct method for doing this is water calorimetry, for which the established technique involves the use of slender thermistor probes that are sealed within a glass vessel containing high-purity water. The probes and vessel perturb the radiation field, via ...

Thermo Mechanical Analysis of Divertor Test Mock-up using COMSOL Multiphysics

Y. Patil[1], D. Krishnan[1], S. S. Khirwadkar[1]
[1]Institute for plasma research, Bhat, Gandhinagar, Gujarat, India

Divertor is act as an exhaust for the nuclear fusion reactor. Main function of a divertor is to remove the heat flux from the plasma. Plasma facing components of the divertor are made up of Carbon (Graphite/CFC) and tungsten like materials[1]. Hence these materials are exposed to the transient heat loads up to 10MW/m^2. Thermo mechanical behavior of Graphite test mock-up under the transient heat ...

Quick Search