Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Transient Conjugate Optical-thermal Fields in Thin Films Irradiated by Moving Sources: A Comparison between Back and Front Treatment

N. Bianco[1], O. Manca[2], and D. Ricci[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A two dimensional instationary analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure on a glass substrate by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. COMSOL Multiphysics 3.4 code has been adopted to solve the combined thermal and electromagnetic problem in order to compare the two ...

High Temperature Process Simulation

O. Geoffroy, and H. Rouch
INOPRO, Villard de Lans, France

The crystal growth industry uses high temperature processes. To improve production efficiency, a good knowledge of thermal effects is necessary. We show in this article a methodology to get reliable data by mixing simplified models, sensitivity studies and parameters adjustments. The precision is improved by comparison with experimental measurements.

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Modeling a Novel Shallow Ground Heat Exchanger

M. Bottarelli[1], M. Bortoloni[1]
[1]Università degli Studi di Ferrara, Dipartimento di Architettura, Ferrara, Italia

Ground Heat Exchangers (GHXs) are rarely installed horizontally in linked ground source heat pumps used for space conditioning, because their energetic performance is lower than in the vertical solution. However, the horizontal one holds several advantages: it is easy to carry out and upkeep, it is more compliant with environmental regulations, and interferes marginally with groundwater systems. ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, requiring modeling and ...

Integrated Solar Thermal Collector with Heat Storage

A.R. Sánchez-Guitard[1], E. Ruiz-Reina[1]
[1]University of Málaga, Málaga, Spain

In this work, we study the design of a new integrated system for Solar Water Heating that combines the solar thermal energy collection (primary circuit) with the heat storage (secondary circuit) into the same device. We have performed different finite element method simulations using COMSOL Multiphysics®, for solving the equations of heat transfer (conduction and convection) and those of fluid ...

Simulated Rheometry of a Nonlinear Viscoelastic Fluid

A. Czirják[1], Z. Kőkuti[1], G. Tóth-Molnár[1], P. Ailer[2], L. Palkovics[2], G. Szabó[1]
[1]University of Szeged, Szeged, Hungary
[2]Kecskemét College, Kecskemét, Hungary

In certain cases, the accuracy of measurements with a rotational rheometer can be influenced by inefficient thermal management, by the heat generated in the sample, or by rod-climbing due to the Weissenberg effect. We investigate the effect of these phenomena with simulations in COMSOL Multiphysics®. Our model is based on the axial symmetric (2D) formulation of the two-phase flow with the ...

Study of Gas Dynamics in the Heat-accumulation Stoves

P. Scotton, and D. Rossi
Dipartimento di geoscienze
Università di Padova
Padova, Italy

The paper aims to clarify some aspects of the gases hydro-dynamics within the twisted conduct of heat accumulation stoves (ceramic-refractory stoves) downstream the combustion chamber. Both Comsol laminar and k-e turbulent models have been used in case of straight and curved pipes with circular, square and rectangular cross-sections, at different Reynolds numbers, in case of smooth wall (Comsol ...

Validation of a Simplified Model to Determine the Long-Term Performance of Borehole Heat Exchanger Fields With Groundwater Advection

S. Lazzari[1], A. Priarone[2], and E. Zanchini[1]
[1]University of Bologna, Department DIENCA, Bologna, Italy
[2]University of Genova, Department DIPTEM, Genova, Italy

Finite element simulations performed through COMSOL Multiphysics are used to study the long-term performance of BHE fields placed in a water-saturated porous soil subjected to groundwater movement. The heat transfer problem is written in a dimensionless form and the long-term time evolution of the mean surface temperature of the BHEs, sketched as cylindrical heat sources subjected to a regular ...

Quick Search