Quick Search

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Computer-aided Design of the Heating Section of a Continuous Kheer (Rice Pudding)-making Machine

S. Kadam[1], T. Gulati[2], A. Datta[1]
[1]Indian Institute of Technology, Kharagpur, India
[2]Cornell University, Ithaca, NY, USA

Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which among other components consists of a heating section for cooking kheer. The present study investigates the CFD ...

Strong Localization and Rapid Time Scales of Superheating in Solid-State Nanopores - new

E. Levine[1], G. Nagashima[1], D. Hoogerheide[1], M. Burns[2], J. Golovchenko[1]
[1]Harvard University, Cambridge, MA, USA
[2]Rowland Institute at Harvard University, Cambridge, MA, USA

Extreme localized superheating and homogeneous vapor bubble nucleation have recently been demonstrated in a single nanopore in thin, solid state membranes [1]. Aqueous electrolytic solution present within the pore is superheated to well above its boiling point by Joule heating from ionic current driven through the pore. Continued heating of the metastable liquid can eventually lead to explosive ...

Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity - new

R. C. Thiagarajan[1],
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Materials with an order variable in thermal conductivity as a function of temperature are desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications. Thermal Conductivity is an inherent material property. Engineering the fundamental thermal conductivity needs manipulation at thermal photon level for conventional materials. Engineering thermal ...

Analysis of Infrared Signature of a Ship Operating in MIR and FIR Bands

A. Pellegrini[1], A. Beucci[1], and F. Costa[1]

[1]ALTRAN Italia, Pisa, Italy

In this paper a methodology for calculating the infrared signature of complex objects is presented. The transient thermal analysis allows us to evaluate the temperature distribution on the investigated object, pointing out which parts tend to be warmer. These temperature values are handled in the post processing phase in order to evaluate the zero range radiance distribution and the radiance of ...

Time-Dependent Thermal Stress and Distortion Analysis During Additive Layer Manufacturing, by Powder Consolidation by Laser Heating

M.S. Yeoman[1], J. Sidhu[2]
[1]1. Continuum Blue Ltd., Tredomen Innovation & Technology Park, Tredomen, Ystrad Mynach, United Kingdom
[2]BAE Systems, Advanced Technology Centre, Bristol, United Kingdom

A time-dependent COMSOL Multiphysics model of an additive manufacture process, which uses powder consolidation by laser heating was developed, providing a platform to better understanding the manufacture process & provide a tool to reduce resulting distortion & optimization of an additive manufacture process. The model simulates a high intense laser energy source moving along a pre-defined time ...

Virtual Prototype Evolution by COMSOL Multiphysics® of a Continuous Flow Animal By-Products ABP Ohmic Sterilization Unit - new

R. Heslop[1]
[1]C-Tech Innovation Ltd., Capenhurst, Cheshire, UK

Ohmic heating (Joule heating) is a volumetric heating technology which can effectively process almost any pumpable fluid with extremely high energy efficiency (>95%). This is particularly useful for very thick fluids, those that burn on to hot surfaces and those with high solids content which would cause difficulties for conventional heating techniques. Processing of animal by-products (ABP) ...

Multiphase, Dual Polymer Injection Molding and Cooling of an Open Cavity to Form both Distinct and Graduated Material Properties within a Complex Three-Dimensional Body

M.S. Yeoman[1]
[1]Continuum Blue Ltd, Forest Row, United Kingdom

With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses within the three-dimensional device, poses a difficult challenge to manufacturing an elastomeric implant in a ...

Using Temperature Signals to Estimate Geometry Parameters in Fractured Geothermal Reservoirs

F. Maier[1], P. Oberdorfer[1], I. Kocabas[2], I. Ghergut[1], M. Sauter[1]
[1]Dpt. Applied Geology, Center of Geosciences, Georg-August-University, Göttingen, Germany
[2]Petroleum and Natural Gas Engineering Department Batman, Batman University, Batman, Turkey

We compare the output of 2D single fracture models as well as analytical solutions of the problem. The temperature signal is evaluated with the heat transfer mode while the flow field is assumed to exhibit Darcy flow everywhere. The problem is time-dependent so we have to take into account a change in the boundary conditions from a Dirichlet to a Neumann condition which is activated at the time ...

Coupling Stochastic Boundary Perturbations with Fiber Drawing Heat Transfer

A. Emery[1]
[1]University of Washington, Seattle, WA, USA

The production of polymer fibers is done by drawing raw material (preform) in a vertical cylindrical furnace whose heated walls radiantly heat the preform. The wall temperatures are very high and the dominant heat transfer to the fiber is by radiation with little effect from the convective flow of gas in the furnace. In contrast, for polymer fibers the convection contribution is large, and ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...