Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modeling Convection during Melting of a Phase Change Material

D. Groulx, and R. Murray
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

COMSOL Multiphysics can be used to model a latent heat energy storage system. A 2D numerical study was performed to simulate melting of a PCM including both conduction and convective heat transfer. The heat transfer in fluids and laminar flow physics interfaces were used. To model natural convection, proper volume force was applied to the PCM. The viscosity was input as a piecewise, continuous ...

Numerical Study of a High Temperature Latent Heat Storage (200-300oC) Using Eutectic Nitrate Salt of Sodium Nitrate and Potassium Nitrate

C.W. Foong, J.E. Hustad, J. Løvseth, and O.J. Nydal
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway

In this study, a small scale direct solar thermal energy storage system with secondary reflector is designed and developed. The main advantage of thermal energy storage is that cooking can be carried out during the time when there is little or no sun shine. In addition, no heat transport fluid is needed in this system. A well insulated heat storage should keep the heat for about 24 hours. KNO3 ...

Modeling of a Magnetocaloric System for Electric Vehicles

A. Noume[1], C. Vasile[1], M. Risser[1]
[1]National Institute of Applied Science (INSA), Strasbourg, France

In automotive industry, regardless the type of engine we use, heating and air-conditioning is responsible for the highest energy consumption among all the auxiliary systems all over the year. For conventional vehicles with thermal engines, the heating of the internal space is easy obtainable because of the heat waste from the engine. For the electric vehicles, as the energy is delivered by the ...

Modelling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics

P. S. Rao[1], C. K. Chandra[1]
[1]Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

High Pressure Processing (HPP) is a leading non-thermal food processing technology that is often cited as a major technological innovation in food preservation. Although it is very early to place this emerging technology among the list of breakthroughs in food processing, HPP has started to become a viable commercial alternative for pasteurisation of value added fruits, vegetables, meat, and ...

Heat Transfer Modeling and Analysis of a Rotary Regenerative Air Pre-heater

R. K. Krishna, R. Ramachandran, and P. Srinivasan
Birla Institute of Technology and Science
Pilani
Rajasthan, India

An attempt has been made to sustain the efficiency of an air pre-heater(APH) in the long run. The APH is modeled using COMSOL Multiphysics in 3D and fed with real life conditions. Upon Heat transfer analysis, the temperature profile was found out and from that, the regions undergoing maximum thermal fatigue stress was identified. The plates of the APH to the periphery are subjected to maximum ...

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction furnace which will simulate the conditions to be realized in actual vacuum distillation furnace for this purpose. ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Power Transistor Heat Sink Design Trade-offs

T. Eppes, I. Milanovic, and G. Quarshie
University of Hartford
West Hartford, CT

Power transistors require heat sinks to dissipate thermal energy and keep junction temperatures below the recommended limit. The reliability and longevity of any semiconductor device is inversely proportional to the junction temperature. Hence, a significant increase in reliability and component life can be achieved by a small reduction in operating temperature. A range of heat sink designs ...

Dimensionless versus Dimensional Analysis in CFD and Heat Transfer

H. Dillon[1], A.F. Emery[1], A. Mescher[1], and R.J. Cochran[2]
[1]University of Washington, Seattle, WA, USA
[2]Applied CHT, Seattle, WA, USA

Students in engineering and science are often exposed early in their studies to non dimensional analysis. When it comes to solving fluid flow/heat transfer problems, many solutions, particularly industrial ones, are based on finite element/finite volume using dimensioned quantities. In order to compare to reference information one would like to use codes like COMSOL Multiphysics to solve non ...

3D Simulation of Heat and Moisture Diffusion in Constructions

M. Bianchi Janetti, and F. Ochs
University of Innsbruck
Unit Building Physics
Innsbruck, Austria

The simulation of heat and moisture transfer represents an essential resource in designing energy efficient buildings. In this paper a time-dependent wall model, consisting of several homogeneous domains, with third-type boundary conditions imposed on the surfaces, is implemented in the COMSOL Multiphysics environment. Temperature and moisture content is calculated inside the construction for ...

Quick Search