In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation - new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of transducer that is based upon poorly-configured FE models is unlikely to perform as expected and will almost ...

Modeling Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics

T. Gasch [1], A. Ansell [1],
[1] KTH Royal Institute of Technology, Stockholm, Sweden

An extension of the Solid Mechanics interface in COMSOL Multiphysics® is presented to analyze localized deformations of quasi-brittle materials, for example cracking in concrete. This is achieved by implementing an isotropic damage mechanics constitutive law, which is combined with both a local and a non-local regularization technique to ensure mesh objectivity. The implementation is made using ...

Evaluation of Instability of a Low-salinity Density-dependent Flow in a Porous Medium - new

Y. T. Habtemichael[1], R. T. Kiflemariam[2], H. R. Fuentes[1]
[1]Department of Civil & Environmental Engineering, Florida International University, Miami, FL, USA
[2]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

Seawater intrusion into coastal aquifers is usually modeled by using transport models that include account for the effect of variable-density on flow. Variable-density models can be validated with the Henry and Elder benchmark problems. However, when mixed convective flow is simulated under variable density conditions, it is susceptible to physical and numerical instabilities. The purpose of ...

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Multiphysics Modelling of Standing Column Well and Implementation of Heat Pumps Off-Loading Sequence

A. Nguyen[1], P. Pasquier[1], D. Marcotte[1]
[1] Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby allowing the effect of the pumped water temperature on the capacity and coefficient of performance of the heat ...

Full Coupling of Flow, Thermal and Mechanical Effects in COMSOL Multiphysics® for Simulation of Enhanced Geothermal Reservoirs

D. Sijacic[1], P. Fokker[1]
[1]TNO, Utrecht, The Netherlands

The effective modeling of enhanced geothermal systems (EGS) requires the coupling of geomechanics, fluid flow and thermal processes. An understanding of the complete system with these coupled processes is vital, not just for reservoir stimulation targeted at enhancing reservoir performance, but also for the understanding, prediction and prevention of induced seismicity. Thermal effects however ...

Study of HVDC Grounding Systems Using Finite Element Methods

C. K. C. Arruda [1], A. A. Silveira [1], L. C. R. Vieira [1], F. C. Dart [1],
[1] CEPEL, Rio de Janeiro, RJ, Brazil

High Voltage Direct Current transmission (HVDC) is a suitable alternative for long distance transmission. During the years, the use of this technology has been increasing, which is one of the several reasons to improve methodologies in HVDC grounding systems. Unlike the usual approach in AC, a HVDC grounding system is distinguished by its operating procedures, which is, when it is configured ...

Calibration of a Geothermal Energy Pile Model - new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using a heat pump coupled with embedded heat exchangers. As a result, a multiphysics problem is introduced - heat ...

The Use of COMSOL Multiphysics® Software to Explore Flooding and Rising Dampness Problems Related to Cultural Heritage

H.L. Schellen [1], A.W.M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

In The Netherlands rising dampness problems due to flooding of rivers and high groundwater levels form an essential treat for monumental buildings and heritage. A number of cases exists where rising dampness problems lead to the deterioration of wall finishes but also of valuable wall paintings in churches and castles. To explore the problem and to look for solutions like drying regimes, ...

Simulation of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow

R. Hu [1], Q. Liu [1],
[1] School of Earth Science and Engineering, Hohai University, Nanjing, China

Based on the heat transfer and seepage theory in porous media, a 2D cross section of a horizontal AGF project is selected and a numerical model is set up, which is based on full coupling of temperature and flow fields by combining physical interfaces of Darcy's Law and Heat Transfer in Porous Media. The simulation results show that freezing wall appears in an asymmetrical shape as the ...

1–10 of 207