Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modeling of a Multilayered Propellant Extrusion in Concentric Cylinders

S. Durand[1,3], C. Dubois[1], P. Lafleur[1], V. Panchal[2], D. Park[2], D. Lepage[3], P. Paradis[3]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]US Army ARDEC, Picatinny Arsenal, NJ, USA
[3]General Dynamics OTS Canada Valleyfield, Valleyfield, QC, Canada

A novel propellant technology requires extruding two formulations with differential burning rates together as a multilayered propellant. This propellant is processed into a concentric cylinder configuration, in the form of slow-fast-slow with single perforation. The material uses different path lengths between the inner and outer sections of the die, both coming from the same pressure driven ...

Comparison of Different Passive Oil-Water Mixing Schemes in a Flow Loop

A. Chaudhuri[1]
[1]Materials Synthesis & Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, USA

Oil and water are immiscible fluids and they tend to separate very easily when introduced into a flow stream from two different sources in a flow loop. This model studies the development of mixture volume fraction in an oil-water-flow loop with 3 different passive mixing schemes: (i) blind-T, (ii) check valve, and (iii) static mixer. Each device produces different levels of mixture homogeneity ...

Modeling of Expanding Metal Foams

B. Chinè[1,2], M. Monno[3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications. They are characterized by a cellular structure represented by a metal or metal alloy and gas voids inside (Fig.1). A common metallic cellular material is aluminum foam which can be produced metallurgically by heating a precursor, made of aluminum alloy and TiH2 as foaming agent, in a furnace. In this case, the foaming process ...

Fluid Dynamics Analysis of Gas Stream in a Plasma Torch Reactor

C. Soares[1], N. Padoin[1], F. A. Cassini[1], M. Sanchez[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]University of Oklahoma, Norman, OK, USA

Plasma technology has potential applications in a wide range of areas, such as microwave reflectors/absorbers, material processing, sterilization and chemical neutralization. The knowledge about the fluid behavior in such systems has a central role, since the stability of the flow in the region of the electrical arc is essential for the development of a well-behaved torch. In this work, a ...

Finite Element Simulation of the Oscillatory Flow in a Channel with the Heat Transfer through a Hot Bump

Lee, Y.
Dep. of Engineering Sciences, Embry-Riddle Aeronautical University

The present numerical simulation investigates the time-dependent flow driven by the oscillatory pressure gradient in the streamwise direction. An attempt was made to obtain the flow field that is initially stationary and evolves to the purely oscillatory flow with zero mean velocity, and the results after several cycles of oscillation are compared with the long-time analytical solution in the ...

Reactor Design Improvements for a Propane Autothermal Reformer by Simulation of Momentum Flow

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

The paper presents a two-dimensional model to describe the gas flow in a propane autothermal reactor, developed at the CNR-ITAE Institute, and aimed to design a Beta 5 kWe hydrogen generator, named HYGen II, to be used with Polymer Electrolyte Fuel Cells (PEFCs) for residential applications. The main aim of the mathematical model was to optimize the reactor geometrical key parameters (diameter ...

Investigating the Influence of Dynamic Jet Shapes on the Jet Electrochemical Machining Process

M. Hackert[1], G. Meichsner[2], S.F. Jahn[1], and A. Schubert[1]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology Chemnitz, Germany

Electrochemical Machining is a potential procedure for micro manufacturing technology. Especially the absence of machining forces makes it advantageous for processing metals with high hardness and for the generation of complicated geometries. Applying a closed electrolytic free jet (Jet Electrochemical Machining - Jet-ECM) the electric current is restricted to a limited area. That allows working ...

Fluid Flow Simulations Using New CFD Module

H. Rouch
INOPRO, France

COMSOL\'s new CFD Module has been tested for laminar and turbulent flows in simple geometries, with couple or segregated solver. These tests allow mesh sensitivities and comparison with analytical solutions. They also give a first idea of cpu time and RAM use for standard cases. In a second part a thermal-fluid simulation of a real industrial application is done: the air flows cooling a large and ...

Numerical Aspects of the Implementation of Artificial Boundary Conditions for Laminar Fluid-Structure Interactions

C. Boeckle[1], P. Wittwer[1]
[1]University of Geneva, Geneva, Switzerland

We discuss the implementation of artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane, for a range of low Reynolds numbers. When truncating the half-plane to a finite domain for numerical purposes, artificial boundaries appear. We present an explicit Dirichlet condition for the velocity at these boundaries in terms of an asymptotic expansion for the ...

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]
[1]OSRAM SYLVANIA, Beverly, MA, USA

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

Quick Search