In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Influence of Thermal Conductivity and Plasma Pressure on Temperature Distribution and Acoustical Eigenfrequencies of High-Intensity Discharge Lamps

J. Schwieger[1], B. Baumann[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Heinrich-Blasius-Institute of Physical Technologies, Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge (HID) lamps are energy-efficient light sources with excellent color qualities. A three-dimensional model of a low-wattage lamp, which includes plasma, electrodes, and burner walls, was developed in COMSOL Multiphysics®. Most parameters appearing in the coupled differential equations of the model, such as viscosity, thermal and electrical conductivity are temperature ...

Lamb Waves in Fluid-Loaded Plates

T. Kaufmann[1], F. Kassubek[1], D. Pape [1], M. Lenner[1]
[1]ABB Corporate Research, Baden-Dättwil, Switzerland

Lamb waves are elastic waves propagating in free solid plates. In the case of plates loaded with a fluid, the equations describing these waves have to be modified to include the effects of the fluid. In our work we have tackled this problem using COMSOL Multiphysics®. We have used the two-dimensional plane strain model of the solid mechanics interface to calculate the eigenmodes of the coupled ...

Simulation Studies on the Design of a Helmholtz Resonator type Underwater Acoustic Sensor

Karthi Pradeep[1], G. Suresh[2], V. Natarajan[2],
[1]National Institute of Technology, Tiruchirappalli, Kerala, India
[2]Naval Physical & Oceanographic Laboratory (NPOL), Kochi, Kerala, India

A Helmholtz resonator type acoustic sensor has been designed using analytical method and finite element modeling software, COMSOL Multiphysics®. The acoustic sensor is an aluminium double frustum, hour glass, shaped with the resonator at the bottom and an acoustic horn above to amplify the incoming acoustic signal. The horn provides a broad amplification of the incoming acoustic signal while the ...

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

S. De Paolis[1], F. Lionetto[1], and A. Maffezzoli[1]

[1]Department of Innovation Engineering, University of Salento, Lecce, Italy

Finite element analysis has been used to model the ultrasonic wave propagation both in a custom made transducer and in the tested polymer sample. The model consists of acoustic (passive elements) and electroacoustic (active elements) transmission lines. The simulation of the acoustic propagation accounts for the interaction between the transducer and the materials in the buffer rods, and the ...

Numerical Simulation of Phonon Dispersion Relations for Phononic Crystals

G. Zhu[1], E.M. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, MI, USA

In previous work, a two-dimensional (2D) model was carried out to simulate the phononic band structure of a phononic crystal with square lattice structure, but this model did not account for the out-of-plane phonon dispersions [1]. In fact, for 2D films used for coating materials, it is more interesting to understand their cross-plane properties. In this work, the phonon dispersion relation of ...

Simulation of Acoustical Transfer Paths for Active Noise Control

L. Fromme [1], J. Waßmuth [1], D. Wehmeier [1],
[1] Bielefeld University of Applied Sciences, Bielefeld, Germany

The knowledge of the acoustical transfer paths in active noise control systems is very important for the performance of the system. Unfortunately, simulation is challenging since even simple configurations require comprehensive experience in physics and modeling. Two test setups were chosen for basic investigations on modeling, simulation and validation. The first results presented here are ...

Experimental and Theoretical Investigation of Acoustic Metamaterial with Negative Bulk-Modulus

N. R. Mahesh, and P. Nair
SSN College of Engineering
Tamil Nadu, India

Acoustic metamaterials are structured materials of negative mass density or negative bulk-modulus or both of them. Materials are tailored in sub-wavelength dimensions so as to get these negative properties. This paper compares the result of an experimental investigation of acoustic metamaterial with negative bulk-modulus to its COMSOL modeling. The resonance characteristics of single ...

Surface Acoustic Wave Scattering Matrix Evaluation Using COMSOL Multiphysics®: Application to Surface Acoustic Wave Transmission Through 2D Surface Phononic Crystal

S. Yankin[1,2], A. Talbi[1], V. Preobrazhensky[1,3], P. Pernod[1], O. Bou Matar[1], A. Pavlova[1]
[1] Joint International Laboratory LICS/LEMAC, IEMN UMR CNRS 8520, EC Lille, Villeneuve d'Ascq, France
[2] Saratov State University, Saratov, Russia
[3] Wave Research Center, Russian Academy of Sciences, Moscow, Russia

This contribution is dedicated to numerical analysis of SAW propagation though 2D surface phononic crystal (PnC) and FE method is nowadays one of most common tool for such calculation. The device under investigation consists of two dispersive IDT and lattice of ferromagnetic pillars realized on 128°YX LiNbO3. In addition to dispersion curves calculations this work describes the results of ...

Study & Modeling of 'Acoustic Matching Layers' for Ultrasound Imaging Probes Through Pulse-Echo FEM Simulation - new

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Ultrasound Imaging probes are specific devices that require a very detailed design of acoustic impedance match for the stack of layers that form the probe head (1,3). These are typically made of silicone rubber, special epoxy resins, polyurethanes and, of course, piezoelectric materials. The acoustic impedance, measured in Rayls, have to be matched similarly to an electric circuit (2), from a ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...