In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Quasi-static Analysis on the Effect of Metal Penetrating Depth into the Substrate in Microstriplines

S. Musa, and M. Sadiku
Prairie View A&M University Networking Academy (PVNA), Prairie View, TX, USA

The effect of metallization thickness on planar transmission lines plays an essential role in microwave integrated circuits and thin film technology, especially in the propagation characterization and the electric field distribution in the structures. The objective of this paper is to consider the planar transmission lines with finite thickness not penetrating and penetrating into isotropic ...

Current Density, Electric Field and AC Loss Simulation of Mono Block and Single Layer Polygonal HTS Cable Using COMSOL Multiphysics

G. Konar[2], R. K. Mandal[1], and N. Chakraborty[2]
[1]Electrical Engineering Department, Seacom Engineering College, Dhulagar,West Bengal, India
[2]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

High temperature super conducting (HTS) cables are gaining attentions for their ability to transmit more power compared to their convention counterparts with essentially no resistance and electromagnetic emissions. They are also appropriate for solving the grid congestion problem in the power corridors with their reduced size and weight. But the AC loss that occurs in the HTS cables reduces the ...

Numerical Calculation of the Dynamic Behavior of Asynchronous Motors with COMSOL Multiphysics

J. Güdelhöfer[1], R. Gottkehaskamp[1], A. Hartmann[1]
[1]Department of Electrical Machines and Electromagnetic Field Theory, University of Applied Sciences Düsseldorf, Düsseldorf, Germany

This paper shows how a time-dependent and non-linear simulation of the dynamic operation behavior of an induction machine is executed by means of the \"Rotating Machinery\" interface from COMSOL Multiphysics 4.2a. The two-dimensional FEM model is connected to electrical circuits by coupling the physics \"Rotating Machinery\" and \"Electrical Circuit\" interfaces. These circuits include the ...

Simulation of Microfabricated Linear Ion Trap

J. Heinonen[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

We present a simplified 3D model that simulates the operation of a linear microscale integrated ion trap. It employs a set of metalized electrodes, which are formed on top of an insulator layer on silicon substrate. The confinement in all three dimensions is provided by the application of the specific AC and DC voltages to the corresponding trap electrodes. The distribution of the trapping ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...

Electromagnetic Actuators Modeling, Simulation and Optimization: Review of Methods and Their Application for Switching Devices - new

O. Craciun[1], V. Biagini[1], G. Stengel[1], C. Reuber[2], C. Chao[3], B. Funieru[3] , A. Binder[3]
[1]ABB Corporate Research, Ladenburg, Germany
[2]ABB AG Calor Emag Mittelspannungsprodukte
[3]TU Darmstadt, Department of Electrical Energy Conversion, Darmstadt, Germany

Electromagnetic actuators are representing one important component of ABB's medium voltage reclosers [1, 2]. Their performance is strongly influenced by the considered material properties as well as by the electronic control units that will power the actuator. Depending on the studied phenomena, different modeling, simulation and optimization methodologies are being used for medium voltage ...

Multiple Solutions in the Theory of DC Glow Discharges

P. Almeida, and M. Benilov
Departamento de Física. Universidade da Madeira, Portugal

It was suggested long ago that a theoretical model of a near-cathode region in a DC glow discharge admits multiple steady-state solutions describing different modes of currrent transfer. Even the most simple self-consistent models should admit such multiple solutions. In the present work, these solutions have been calculated for the first time with COMSOL Multiphysics.

Highest Pulsed Magnetic Fields in Science and Technology, Assisted by Advanced Finite-Element Simulation

Thomas Herrmannsdörfer

Dr.
Forschungszentrum Dresden-Rossendorf, Germany

Thomas Herrmannsdörfer got his PhD in experimental physics from the University of Bayreuth in 1994. In 1995, he received the Research Award of the Emil-Warburg-Foundation while he worked at the DFG-Graduiertenkolleg Bayreuth. From 1995 – 1998 he worked as a scientist at Hahn-Meitner-Institute (HMI) Berlin. Since 1998, he has worked at Forschungszentrum Dresden ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to ...

Trapping DNA Molecules in Fluids Using Electrokinetic Effects Generated by Different Electrode Geometries

S. Ghonge[1], S. Kapur [1], S. Banerjee[1]
[1]Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Hyderabad, Telangana, India

In this paper we present results of simulations done to predict the behavior of a system consisting of DNA molecules in an aqueous medium under the combined effect of AC Electroosmosis and Dielectrophoresis (DEP). ACEO is caused by the movement of fluid particles under the influence of the electric field. DEP is caused by polarization of the DNA particle. Two different electrode geometries ...