Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Electrostatic Fluid Structure Interaction (EFSI) on the Huygens Experiment

R. Godard [1], J. de Boer[1], N. Ibrahim[2], and G. Molina-Cuberos[3]
[1]Royal Military College of Canada, Kingston, ON, Canada
[2]University of Toronto, Toronto, ON, Canada
[3]Campus Espinardo, Murcia, Spain

The Huygens Atmospheric Structure Instrument (HASI) was designed to characterize the physical properties of the lower atmosphere and surface of Titan, the planet-size moon of Saturn. The Relaxation Probe (RP) sensor on the Huygens probe, determined the electrical conductivity in the lower atmosphere of Titan, from 140 km to 40 km. It was suspected that at an altitude above 100km, the booms ...

FEM-Investigations Of Superconductor/Ferromagnet Heterostructures: A Compliance Test Between Various Models

P. Krüger[1], F. Grilli[1], Y. Genenko[2], and R. Brambilla[2]
[1]Karlsruhe Institute of Technology, Germany
[2]Technical University Darmstadt, Germany, ERSE Spa, Milan, Italy

In recent years, a number of numerical and finite-element-methods in particular - some implemented in COMSOL - have been developed to investigate various properties of superconducting materials. Following converse conclusions by different models regarding similar physical phenomena, the consistency of these models has been of increased interest. In this publication the accordance of an ...

Modeling of High Temperature Superconducting Tapes, Arrays and AC Cables Using COMSOL

O. Chevtchenko
Technical University of Delft, The Netherlands

In this paper we present a set of numerical models created with COMSOL Multiphysics. The set includes quantitative models of a superconducting tape operated at 77 Kelvin, carrying a transport current and exposed to external magnetic field; an array of such tapes and a triaxial high temperature superconducting cable. Similar models were created in the past. However, an advantage of our approach is ...

Verification and Time Performance Analysis of COMSOL v3.5a for Solving the Electromagnetic Problem in a Superconductor Slab

J. Lloberas[1], J. López[1], E. Bartolomé[2], and X. Granados[3]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Escola Universitària Salesiana de Sarrià, Barcelona, Spain
[3]Institut de Ciència de Materials de Barcelona, Barcelona, Spain

Numerical analysis based on finite element method (FEM) represents a powerful approach to solve electromagnetic problems. For instance, FEM methods have been broadly used to calculate the critical state current distribution in high temperature superconductors of various geometries. In the near future, we intend to develop a tool in COMSOL v3.5a for the analysis of power applications, such as ...

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded with currents up to 400 kA. For this purpose, a test rig containing a high-voltage pulsed power supply and ...

稳态磁场对激光熔凝熔池的抑制作用研究

王梁[1], 胡勇[1]
[1]浙江工业大学,杭州,浙江,中国

激光熔凝通常被作为材料表面的最终处理工艺,然而激光熔凝处理后,材料表面容易出现高低起伏的波纹,降低了其表面质量。因此,为了在激光熔凝处理后获得平整的表面,同时降低后续机加工所需的成本和时间,本文提出了利用稳态磁场抑制激光所致熔池运动的方法。以固液相变统一模型为基础,

Simulation der elektrischen Feldverteilungen im elektrischen Rasterkraftmikroskop

Müller, F, Hietschold, M - Institut für Physik Analytik an Festkörperoberflächen (AFKO)

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

Numerical Simulation of a Dezincification Process Controlled by Electromagnetic Fields

S. Letout1, J. C. Tissier2 , G. Cognet1, Y. Fautrelle1, and Y. Du Terrail Couvat1
1SIMAP Laboratory (INPG-CNRS), Saint Martin d’Hères, France
2Ecole Centrale de Lille, Villeneuve D'Ascq, France

A parametric simulator for a dezincification process industrial device analysis has been developed. The device is built upon a COMSOL Multiphysics magneto-thermo-hydraulic coupled model in a cylindrical coordinate system.We study effects of electromagnetic forces on a cast iron load and consequently on Zn gas bubbles trajectories included in the metal.Trajectories are obtained according to mass ...

Designing Magnetic Coils from the Inside Out

C. Crawford, and D. Wagner
University of Kentucky
Lexington, KY

Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor and magnetic material configuration, using finite element analysis (FEA) software to calculate the resulting field, modifying the configuration, and iterating to produce the desired results. We take the opposite approach of specifying the required magnetic field, imposing it as a boundary condition on ...

Quick Search