Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Thermal Hydraulic Study for Heavy Liquid Metal Flows using COMSOL Multiphysics

K. T. Sandeep[1], S. Sahu[1], V. C. Chaudhari[1], R. P. Bhattacharyay[1], E. R. Kumar[1]
[1]Institute for Plasma Research, Gandhinagar, Gujarat, India

Liquid metals are the extensively used as coolants in nuclear reactors.However, the heat transfer mechanism differs significantly in low Prandtl number heavy liquid metals (HLM’s) than those observed in common fluids. It is crucial to have the accurate heat transfer correlation for the liquid metal to estimate the heat removal efficiency. The present paper describes the use of COMSOL tool for ...

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

C. Thiagarajan[1], J. Anto[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India.
[2]Researcher

Conventional heating of material wastes energy during heating due to inherent radiation, conduction and convection based heating mechanism. Alternate efficient heating methods are actively researched for improved efficiency. Radio frequency based electromagnetic heating is increasingly used for efficient heating in place of conventional heating. This requires coupling of electromagnetic and heat ...

Design and Simulation of Valveless Piezoelectric Micropump

L. Nayana[1], P. Manohar[1], S. Babu[1]
[1]Department of Electrical Engineering, Visvesvaraya Technological University, Bangalore, Karnataka, India

In this paper some discrete parts of a valveless piezoelectric micropump for drug delivery system is designed and simulated. The core components of the micropump are actuator unit that converts the reciprocating movement of a diaphragm actuated by a piezoelectric actuator into a pumping effect and Nozzle/diffuser elements that are used to direct the flow from inlet to outlet. Simulations are ...

Modeling of Induction Heating of Steel Billets for Control Design Purposes

J. Kapusta[1], J. Camber[1], G. Hulkó[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, STU Bratislava, Slovak Republic

This paper deals with numerical modeling of modular industrial induction heating of steel billets for hot forming applications using the COMSOL Multiphysics. A mathematical model based on Finite Element Method is presented. Design of induction heaters is constantly evolving and improving in terms of electrical and thermal efficiency. In recent years there is a trend of modular designed induction ...

Design and Analysis of Micro-Heaters for Temperature Optimization using COMSOL Multiphysics for MEMS Based Gas Sensor

V. S. Selvakumar[1], L. Sujatha[1]
[1]Rajalakhmi Engineering College, Chennai, Tamil Nadu, India

Micro-Heaters are the key components in sub-miniature micro-sensors, especially in gas sensors. The metal oxide gas sensors utilize the properties of surface adsorption to detect changes in resistance as a function of varying concentration of different gases [5]. To detect the resistive changes, the heater temperature must be in the requisite temperature range over the heater area. Hence the ...

Material Selection and Computational Analysis on DOHC V16 Engine’s Mounting Bracket Using COMSOL Multiphysics

M. V. A. Nag[1]
[1]G.R.I.E.T., Hyderabad, AP, India

Reduction of the engine vibration and the dynamic forces transmitting from engine to the automotive body structure has always been an important part of automotive research. Automobile engineers face the task of creating a mechanism to absorb these vibrations and provide a smooth ride. The usage of Motor Mounts is the best solution for dampening the effects of vibrations and oscillations. This ...

Optimal Utilization of Railgun

N. R. Mahajan[1], S. B. Patel[1], Z. A. Khan[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Andhra Pradesh, India

Railgun is an electrically-powered gun that accelerates a conductive projectile along magnetic metal rails. Various factors increase the projectile velocity. Each method has its own advantages and disadvantages. While increasing the projectile velocity, one has to keep in mind the longevity of the rail guns for practical use . Railguns are often damaged after few uses due to the extreme working ...

Design and Simulation of MEMS based PZT energy generator.

A. Deshpande[1]
[1]B.V.Bhoomaraddi College of Engineerring & Technology, Hubli, Karnataka, India

At present, a great deal of research effort has been directed to find eco-friendly and renewable sources of energy. With the rising costs of crude oil and petroleum, along with the derogatory effects that they pose to the environment, this sort of approach is of utmost importance. This has also led to the search for alternate methods of transforming the various forms of energy into electrical ...

Design and Simulation of MEMS Based Gyroscope for Vestibular Prosthesis

R. Nithya[1], K. Kavitha[1], R. K. Shahana[1], A. Gupta[1], M. Alagappan[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

The primary function of the vestibular system is to provide the brain with information about the body\'s motion and orientation. The absence of this information causes blurred vision and spatial disorientation, vertigo, dizziness, imbalance, nausea, vomiting, and other symptoms often characterize dysfunction of the vestibular system. Our aim is to design vestibular prosthesis using COMSOL ...

Effects of Fluid and Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

C. Thiagarajan[1], G. Shenoy[2], B. S. Shenoy[3]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, India.
[2]Department of Mechanical & Manufacturing Engineering, Manipal Institute of technology, Manipal, India
[3]Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal, India

Vibration and Dynamic performances of the rotating machinery are conventionally evaluated based on the dominant structural forces such as the centrifugal forces. The increase in rotational speed, miniaturization and performance, demands for improved and accurate evaluation of the vibration performance. The inclusion of coupled effects of fluid and centrifugal forces can contribute significantly ...

Quick Search