In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Mobility of Catalytic Self-Propelled Nanorods Modeling with COMSOL Multiphysics®

F. Lugli[1] and F. Zerbetto[1]
[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

A small particle or a nano-sized object placed in a liquid is subject to random collisions with solvent molecules. The resulting erratic movement of the object is known as Brownian motion, which, in nature, cannot be used to any practical advantage both in natural systems (such as biomolecular motors) or by artificial devices. If energy is supplied by external source or by chemical reactions, ...

A Fully Coupled Three-Dimensional Dynamic Model of Polymeric Membranes for Fuel Cells

P. Alotto[1], M. Guarnieri[1], and F. Moro[1]

[1]Dipartimento di Ingegneria Elettrica, Università di Padova, Padova, Italy

The proton exchange membrane is a key component in the currently widely studied Proton Exchange Membrane Fuel Cells. In this paper a fully coupled three-dimensional dynamic numerical model of the membrane including all the physically relevant phenomena, i.e. ion transport, hydration-dependent conductivity and thermal effects is presented. The highly non-linear model is discretized by means of ...

Modeling Contaminant Diffusion in Highly Complex Rock Structures

N. Diaz[1], A. Jakob[1], L. Van Loon[1], and D. Grolimund[2]
[1]Paul Sherrer Institut NES/LES, Villigen PSI, Switzerland
[2]Paul Sherrer Institut NES/SLS, Villigen PSI, Switzerland

Opalinus clay is currently being proposed as a potential host rock for radioactive waste repository in deep geological formation. It is then important for performance assessments to understand the transport properties of such rocks. Clay materials are characterized by low hydraulic conductivities and diffusion is assumed to be the main transport mechanism. The studied rock is a complex assembly ...

Modeling the Behavior of Phased Arrays in Brain Tissue: Application to Deep Brain Stimulation

V. Valente[1], A. Demosthenous[1], and R. Bayford[2]

[1]Department of Electronic & Electrical Engineering, University College London, London, United Kingdom
[2]Department of Natural Sciences, Middlesex University, London, United Kingdom

Deep Brain Stimulation (DBS) is a therapeutic tool used for a number of neurological disorders including chronic pain, incontinence and movement disorders, such as Parkinson’s disease. DBS consists of the low-frequency stimulation of an area of the brain, known as basal ganglia. The stimulation is provided by clinical implant, consisting of a pulse generator and an electrode lead ...

Fluid Flow Simulation of Preconcentration Membranes Using Finite Elements Tools

R. Inglés[1], J. Pallares[2], J.L. Ramirez[1], and E. Llobet[1]

[1]Dept. of Electronic, Electrical and Automatic Control Engineering, Universitat Rovira i Virgili, Tarragona, Spain
[2]Department of Mechanical Engineering School of Chemical
Engineering Universitat Rovira i Virgili, Tarragona, Spain

We use finite elements simulations in order to study the fluid flow behavior in a chamber of a preconcentrator. We realized that most part of the fluid does not affect our preconcentrator because it is going out the chamber at high distance above it and parallel to the preconcentrator. So, we are wasting most part of our fluid and we need a lot of time to have a good concentrator factor. We ...

Growth and Remodelling of Intracranial Saccular Aneurysms

A. Di Carlo[1], V. Sansalone[2], A. Tatone[3], and V. Varano[1]
[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Laboratoire de Mécanique Physique, Université Paris Est, Paris, France
[3]DISAT, Università degli Studi dell’Aquila, L'Aquila, Italy

We present a mechanical model a growing spherical shell suitable for predicting the evolution of a Saccular Cerebral Artery Aneurysms (SCAA). It relies basically on the Kröner-Lee decomposition, used to describe the interplay between the current and the relaxed configuration of body elements. Rupture or stabilization of a SCAA are the end effect of a number of biological mechanisms, still poorly ...

201–209 of 209
Next |
Last