Galleria dei Modelli

La Galleria dei Modelli raccoglie un'ampia varietà di modelli realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file .mph dei modelli pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni. Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.

NOx Reduction in a Monolithic Reactor

This suite of examples illustrate the modeling of selective NO reduction, that occurs as flue gases pass through the channels of a monolithic reactor in the exhaust system of a motored vehicle. The simulations are aimed at finding the optimal dosing of NH3, the reactant that serves as reducing agent in the process. Three different analyses are performed: Kinetic analysis: The example takes a ...

Droplet Breakup in a T-junction

Emulsions consist of small liquid droplets immersed in an immiscible liquid and widely occur in the production of food, cosmetics, fine chemicals, and pharmaceutical products. The quality of the product is typically dependent on the size of the droplets. Simulating these processes can help in optimizing these droplets as well as other process variables. This model studies the volume mass ...

Mach-Zehnder Modulator

A Mach-Zehnder modulator is used for controlling the amplitude of an optical wave. The input waveguide is split up into two waveguide interferometer arms. If a voltage is applied across one of the arms, a phase shift is induced for the wave passing through that arm. When the two arms are recombined, the phase difference between the two waves is converted to an amplitude modulation. This is a ...

Capacitive Pressure Sensor

A capacitive pressure sensor is simulated. This model shows how to simulate the response of the pressure sensor to an applied pressure, and also how to analyze the effects of packing induced stresses on the sensor performance.

Laser Heating - A Self Guided Tutorial

This tutorial shows how to model transient heat conduction in a glass slab heated by a laser beam. The tutorial emphasizes on the use of functions to model the laser power as a body heat source. Several key design variables have been parameterized. Suggestions on meshing and solver settings are provided. Three different modes of operation are investigated. - Stationary laser emitting ...

Frequency Selective Surface, Periodic Complementary Split Ring Resonators

Frequency selective surfaces (FSS) are periodic structures with a bandpass or a bandstop frequency response. This model shows that only signals around the center frequency can pass through the periodic complimentary split ring resonator layer.

Porous Reactor with Injection Needle

This model treats the flow field and species distribution in an experimental reactor for studies of heterogeneous catalysis. The model exemplifies the coupling of free and porous media flow in fixed bed reactors. The reactor consists of a tubular structure with an injection tube that has its main axis perpendicular to the axis of the reactor. The incoming species in the main and injection ...

Optical Scattering off of a Gold Nanosphere

This model demonstrates the calculation of the scattering of a plane wave of light off of a gold nanosphere. The scattering is computed for the optical frequency range, over which gold can be modeled as a material with negative complex-valued permittivity. The far-field pattern and the losses are computed.

Phase Change

This example demonstrates how to model a phase change and predict its impact on a heat transfer analysis. When a material changes phase, for instance from solid to liquid, energy is added to the solid. Instead of creating a temperature rise, the energy alters the material’s molecular structure. Equations for the latent heat of phase changes appear in many texts but their implementation is ...

Laser Heating of a Silicon Wafer

A silicon wafer is heated up by a laser that moves radially in and out over time. In addition, the wafer itself is rotated on its stage. The incident heat flux from the laser is modeled as a spatially distributed heat source on the surface. The transient thermal response of the wafer is shown. The peak, average, and minimum temperature during the heating process is computed, as well as the ...

Quick Search