La Galleria dei Modelli raccoglie un'ampia varietà di modelli realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file .mph dei modelli pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni. Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.

Fluid-Structure Interaction in Aluminum Extrusion

In massive forming processes like rolling or extrusion, metal alloys are deformed in a hot solid state with material flowing under ideally plastic conditions. Such processes can be simulated effectively using computational fluid dynamics, where the material is considered as a fluid with a very high viscosity that depends on velocity and temperature. Internal friction of the moving material acts ...

Heat Transfer in a Surface-Mount Package for a Silicon Chip

All integrated circuits—especially high-speed devices—produce heat. In today’s dense electronic system layouts heat sources are many times placed close to heat-sensitive ICs. Designers of printed-circuit boards often need to consider the relative placement of heat-sensitive and heat-producing devices, so that the sensitive ones do not overheat. One type of heat-generating device is a voltage ...

Steady-State 2D Axisymmetric Heat Transfer with Conduction

This model how to build and solve a conductive heat transfer problem using the Heat Transfer interface. The model, taken from a NAFEMS benchmark collection, shows an axisymmetric steady-state thermal analysis. As opposed to the NAFEMS benchmark model, we use the temperature unit kelvin instead of degrees Celsius for this model.

Forced Air Cooling with Heat Sink

Heat sinks are usually benchmarked with respect to their ability to dissipate heat for a given fan curve. One possible way to carry out this type of experiment is to place the heat sink in a rectangular channel with insulated walls. The temperature and pressure at the channel’s inlet and outlet, as well as the power required to keep the heat sink base at a given temperature, is then measured. ...

Parameterized Double-Pipe Heat Exchanger Preset Model

Double-pipe heat exchangers, with their typical U-turn shape, are one of the simplest and cheapest type of heat exchangers used in the chemical process industry. This example studies the cooling of hot oil (130°C) by a cool oil (60°C) entering in counter-current. As the oils flow through the system, the material properties of both change with the varying temperature. The model uses the Non ...

Turbulent Flow Over a Backward Facing Step

The backward facing step is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion. Spatial variations in the velocity field cause production of turbulence outside the wall region and its interaction with ...

Fluid Damper

Fluid dampers are used in military devices for shock isolation and in civil structures for suppressing earthquake-induced shaking and wind-induced vibrations, among many other applications. Fluid dampers work by dissipating the mechanical energy into heat. This model shows the phenomenon of viscous heating and consequent temperature increase in a fluid damper. Viscous heating is also important ...

Out-of-Plane Heat Transfer for a Thin Plate

This example models heat transfer in a thin rectangular metal plate. Because the plate’s thickness is only 1/100 of its length and width, you can simulate the process using a 2D approximation. The plate has a fixed temperature at one end and is isolated at the other. A surrounding liquid cools the plate by convection. In addition, the model considers surface-to-ambient radiation.

Radiation in a Cavity

This model shows how to build and solve a radiative heat transfer problem using the Heat Transfer interface. In particular, this 2D model illustrates the use of the surface-to-surface radiation feature. In this model, three surfaces form a cavity. Heat flux is set at two outer boundaries, while temperature is set on the third. The model's simple geometry, allows a comparison of results ...

Power Transistor

In every system where there is conduction of electric current, and where the conductivity of the material is finite, there will be electric heating. Electric heating, also referred to as Joule heating, is in many cases an undesired by-product of current conduction. This model simulates a system consisting of a small part of a circuit board containing a power transistor and the copper pathways ...