Electromagnetics Blog Posts

Designing Spiral Slot Antennas with Electromagnetics Simulation
Spiral slot antennas have nearly perfect circularly polarized radiation and wideband frequency response, and they can maintain a consistent radiation pattern and impedance over large bandwidths.

Optimizing Thermophotovoltaic Designs with Heat Transfer Simulation
Thermophotovoltaic (TPV) systems, known for their flexible fuel choice options, immovable parts, and potential for efficient power generation, can be optimized with heat transfer modeling.

Analyzing the Viscous and Thermal Damping of a MEMS Micromirror
Micromirrors are efficient and inexpensive. Here, we go over 2 types of analyses for a MEMS micromirror design, frequency-domain and transient, using the COMSOL® software.

Modeling Ferromagnetic Materials in COMSOL Multiphysics®
Get a comprehensive guide to modeling ferromagnetic materials in COMSOL Multiphysics®, including an introduction to the theory and a series of useful animations.

Analyzing a MEMS-Based Strain Gauge Design with Simulation
MEMS-based strain gauges are helpful in both civil engineering and biomedicine. Read about a team of researchers who used the MEMS Module to analyze strain gauge designs.

Model Deforming Objects with the Arbitrary Lagrangian-Eulerian Method
The combined efforts of Leonhard Euler and Joseph-Louis Lagrange inspired the arbitrary Lagrangian-Eulerian (ALE) method, which we can use to model deforming objects.

Analyzing White Pupil Échelle Spectrographs via Ray Tracing Simulation
Astronomers use échelle spectrographs to detect far-away planets. To design a white pupil échelle spectrograph with optimized sensitivity, engineers can turn to ray tracing software.

How to Use the Beam Envelope Method for Wave Optics Simulations
In order to simulate optically large optical systems, you need to solve for Maxwell’s equations, which requires a fine mesh and a lot of computational energy. Enter the beam envelope method.