In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. However the parameters directly accessible from experiments are the time required for a stream to be observed and ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Multiphysics Approach of the Performance of a Domestic Oven

N. Garcia-Polanco[1], J. Capablo[1], J. Doyle[1]
[1]Whirlpool Corporation, Cassinetta di Biandronno (VA), Italy

The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the global energy efficiency of the system. A 3D Finite Element model developed with a Multi-physics approach is validated with the experimental data from the standard test for energy consumption of the European Union (EN 50304:2001). In this test a brick ...

Modeling of Expanding Metal Foams - new

B. Chinè[1,2], M. Monno[3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications. They are characterized by a cellular structure represented by a metal or metal alloy and gas voids inside (Fig.1). A common metallic cellular material is aluminum foam which can be produced metallurgically by heating a precursor, made of aluminum alloy and TiH2 as foaming agent, in a furnace. In this case, the foaming ...

Desorption Simulation of a Highly Dynamic Metal Hydride Storage System

D. Wenger[1], W. Polifke[2], and E. Schmidt-Ihn[3]
[1]Wenger Engineering GmbH, Ulm, Germany
[2]Technical University of Munich, Munich, Germany
[3]Daimler AG, Kirchheim/Teck, Germany

Metal hydrides are a widely-used method for storing and releasing hydrogen chemically under moderate conditions. This paper will present how highly dynamic metal hydride storage has been simulated and optimized using COMSOL Multiphysics. It will be shown how mass, energy and momentum balances were implemented and what boundary conditions were set to resolve various scenarios. The result of the ...

Multiphysics: Fluid Mixing and Brine Pool Formation for Economic Geology Applications - new

C. Schardt[1]
[1]University of Minnesota-Duluth, Duluth, MN, USA

Significant submarine mineral deposits form when hot, metal-laden, saline fluids emerge onto the seafloor and mix with ambient seawater. Resulting density changes of fluid mixtures can trigger fluid buoyancy reversals, brine pool formation, and metal accumulation (Figure 1). While some of these processes are known from experiments, the inception, development, and physical-chemical processes ...

COMSOL application in modeling PEMFC transients

X. Li
Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Beijing, China

We studied the transient characteristics of PEMFC and water transport during PEMFC start-up, concerning the following aspects: Effect of air stoichiometry change on transient behavior of PEMFC, Transient behavior of water transport during PEMFC start-up, and high temperature PEMFC modeling.

The Effect of Composition on the Role of Evaporation During Oil Recovery by Combustion

N. Khoshnevis Gargar[1], A. Mailybaev[2], D. Marchesin[2], H. Bruining[1]
[1] Delft University of Technology, Delft, The Netherlands
[2] Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, Brazil

One of the methods to recover oil from medium and low viscosity in complex reservoirs uses air injection leading to oil combustion. In this case the oxygen in the air burns the heavier components of the oil, generating a heat wave leading to vaporization of lighter components. The combustion mechanisms are different for light oils, where evaporation is dominant, whereas for medium non-volatile ...

Optimization of the Herringbone Type Micromixer Using Numerical Modelling and Validation by Measurements - new

E. Tóth[1], K. Iván[1], P. Fürjes[2]
[1]Pázmány Péter Catholic University, Budapest, Hungary
[2]Research Centre for Natural Sciences Institute for Technical Physics and Materials Science Hungarian Academy of Sciences, Budapest, Hungary

COMSOL Multiphysics® software was used in this study to simulate mixing by diffusion and by secondary flow. Particle tracing model was applied to simulate the mixing of cells in the microchannel. Results agreed well with the measurement, an optimal herring-bone structure was proposed for integration into a bioanalytical system.

Numerical Simulation of Carbon Steel Corrosion Exposed to Flowing NaCl Solutions Through an Annular Duct - new

A. Soliz[1], K. Mayrhofer[1], L. Caceres[2]
[1]Department of Interface Chemistry & Surface Engineering, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
[2]Department of Chemical Engineering, University of Antofagasta, Antofagasta, Chile

A three-dimensional mathematical model under stationary conditions have been established to understand the corrosion of carbon steel cylindrical samples immersed in flowing NaCl solution through an annular duct. The migration, diffusion and convection mass transfer mechanisms were solved using the Nernst–Planck equation coupled to the Navier-Stokes equation. A corrosion model based on the mixed ...