In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Error Analysis in Estimating Temperature-Dependent Thermal Diffusivity and Kinetic Parameters using Heat Penetration Data

K.D. Dolan[1,2], A.R. Sommerlot[1], and D.K. Mishra[1]
[1]Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
[2]Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA

Growing consumer demand for nutraceuticals has stimulated interest by food companies to increase levels of these health-promoting compounds. Thermal processing of canned foods in a retort produces a unique problem: some of the nutraceuticals are highly sensitive to temperature, and require accurate parameter estimates to predict their fate during processing. Error in temperature measurement due ...

Cluster Diameter Determination of Gas-solid Dispersed Particles in a Fluidized Bed Reactor

M. Das
Department of Biotechnology, PESIT, Bangalore, Karnataka, India

Clustering is a common hydrodynamic characteristic observed among suspended gas-solid particles in a fast fluidized bed (FFB) regime of a circulating fluidized bed (CFB) system. In this paper clustering behavior has been studied with Geldart group B particles like coal and iron ore in a circulating fluidized bed of diameter 0.1016 m and height 5.62 m. The cluster size when calculated from the ...

Modeling of Coupled Fluid Flow and Shear-induced Solidification Kinetics in Rheocasting of Aluminium Alloys

G. Maizza, and G. Lorenzatto
Politecnico di Torino
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica
Torino, Italy

The model proposed by Schneider et al., for polymers is herein adapted in order to assess its suitability in elucidating the thixotropic behavior of aluminum alloys. The COMSOL Multiphysics program is employed to solve the inherent coupled mathematical problem, consisting in the kinetic ordinary differential equations and the momentum and energy transport partial differential equations. The ...

Humidity Mass Transfer Analysis in Packed Powder Detergents

F. Zonfrilli[1], V. Guida[1], L. Scelsi[1]
[1]Procter & Gamble Italia, Pomezia, Roma, Italy

Powder detergents containing sodium percarbonate and bleach activators undergo chemical decomposition when exposed to high relative humidity. Controlling the moisture intake in finished product packs is therefore a fundamental need in order to guarantee product stability during the whole supply chain. In this paper we show how we have leveraged COMSOL Multiphysics capability in order to model ...

Comparison Between Flow Simulations and Foam Experiments in Porous Media

R.R. Thorat[1], H. Bruining[1]
[1]Petroleum Engineering, CiTG, TU Delft, Delft, The Netherlands

Recovery of oil by gas injection is usually inefficient due to the low viscosity of the gas, which results in bypassing of the oil. By adding surfactant solutions it is possible to get in-situ foam formation. Foam has a much higher “viscosity” and hence does not bypass the oil, leading to enhanced oil recovery. In this context, the foam propagation is studied experimentally and theoretically. We ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

Acid-Base Reactions Enhancing Membrane Separation: Model Development and Implementation

C. Bayer[1], S. Stiefel[1], M. Follmann[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Reactive extraction of organic acids from an aqueous solution to an alkaline stripping fluid is based on a selective barrier allowing permeation of non-polar molecules, which subsequently react with the stripping agent. The shift from the organic acid to its base induced by the chemical equilibrium enhances mass transfer inside the membrane’s porous substructure. A model of the porous ...

Simulation of the Degradation of Methyl Red by Gliding Arc Plasma

S. Cavadias [1], B. Trifi [2], S. Ognier[1], and N. Bellakhal[3]
[1]Laboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, Université Pierre et Marie Curie, Paris, France
[2]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
[3]Département de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. N°676, 1080 Tunis Cedex, Tunis, Tunisie

The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with the degradation of methyl red by a Glidarc humid air plasma producing active species, mainly OH, that can ...

Flow of Dry Foam in a Pipe

M. Divakaran[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Due to the coupling of foam flow with foam generation step, the earlier studies on foam flow have not led to consistent results. An increase in flow rate to obtain ?P vs. Q data changes the foam under investigation itself. The controlled experiments carried out earlier in our group show that ?P increases with flow rate as Q^2/3, a weaker dependence than that known for laminar flow or plug flow ...

A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying

A. Warning[1], J. M. R. Arquiza[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

A continuum, porous medium formulation with non-equilibrium sublimation was developed and validated for freeze drying without and with uniform microwave volumetric heating. The model incorporates the effect of Knudsen flow at low pressure and low permeability freeze drying. The distributed, non-equilibrium sublimation demonstrated that the sublimation front is a sharp boundary for high ice ...