In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Degeneracy Breaking, Modal Symmetry and MEMS Biosensors

H.T.D. Grigg[1], T.H. Hanley[1], B.J. Gallacher[1]
[1]Newcastle University, Newcastle upon Tyne, United Kingdom

This work is concerned with systems possessing cyclic symmetries. In particular, we concentrate on the case in which the medium possesses infinite order cyclic symmetry, while the constitutive relations have cyclic symmetry of a lower order. We investigate the interactions between modes with cyclic symmetry of order n and geometries with underlying cyclic symmetry of order M. Rayleigh's ...

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...

Simulation of Impact Damage in a Composite Plate and Its Detection

V. Pavelko[1], I. Pavelko[1], M. Smolyaninovs[1], H. Pffeifer[2], M. Wevers[2]
[1]Riga Technical University, Riga, Latvia
[2]Catholic University Leuven, Leuven, Belgium

A problem of damage prediction in aircraft structure and its non-destructive evaluation is very important for aircraft structural health assessment. The analysis of the features of direct impact of thin-walled laminate component of aircraft was performed by COMSOL Multiphysics software. Mainly the GFRC and CFRC laminates were selected in form either thin separate plate or sandwich structure. The ...

Acoustic Wave Crack Detection: A First Principles Approach

R. W. Pryor [1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

Crack detection is and has been an active field of exploration, both theoretical and applied for a number of years. It is the belief of this author that the concepts presented herein explore a new methodology for the modeling and the detection of cracks and families of cracks in crystalline solids, polycrystalline solids and high viscosity amorphous materials (glasses). In the case of the ...

Two-Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

B. Ghose[1], K. Balasubramaniam[2], C.V. Krishnamurthy[3], and A.S. Rao[1]
[1] High Energy Materials Research Laboratory, Pune, Maharashtra, India
[2] Center for Non Destructive Evaluation, Department of Mechanical Engineering, IIT Madras Chennai, Tamil Nadu, India
[3] Department of Physics, IIT Madras,Chennai, Tamil Nadu, India

Ultrasonic Testing (UT) is one of the important Non-Destructive Evaluation (NDE) technique widely used for characterisation of materials as well as detection and characterisation of flaws present in the material used in various industries. There are many different important materials like metals, metallic alloys, rubber, composites etc used in aerospace industries is being inspected using UT as ...

Design and Simulation of MEMS Based Piezoelectric Insulin Micro-Pump

F. Meshkinfam [1],
[1] University of Ontario Institute of Technology, Oshawa, ON, Canada

One of the most effective treatments for diabetes type 1 and 2 is the administering Insulin. The design of positive volumetric insulin pump is significantly a multiphysics problem where the volumetric change of the main pump chamber and the pumped fluid are directly coupled. We used COMSOL Multiphysics® to investigate the performance of a MEMS based Insulin Micro-Pump with a Piezoelectric ...

Analysis of an Automobile Disc Brake

H. Krishnan [1], T. Zhu [1], Y. Zeng [1],
[1] University of California Los Angeles, Los Angeles, CA, USA

The study investigates the thermal and mechanical effect of a braking action on a ventilated carbon ceramic brake disc assembly and determines the best vane profiles for maximum cooling and dissipation of heat.

Design and Simulation of 3D ZnO Nanowire Based Gas Sensors for Conductivity Studies

N. Gouthami, D. Parthiban, M. Alagappan, and G. Anju
PSG College of Technology
Tamil Nadu, India

The objective of this paper is to design a 3D Gas Sensor for sensing Hydrogen gas and to increase the conductivity at nano level. In this novel design, nanorods act as the sensing layer. The sensitivity towards gas adsorption is found to be increased due to its high surface to volume ratio. The total displacement and voltage on intermediate layer after gas adsorption will be changing by varying ...