In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Evaluation of Novel Wing Design for UAV - new

P. K. Bahumanyam[1]
[1]University of Alabama in Huntsville, Huntsville, AL, USA

Viable design alternative for the existing and fast growing UAVs which are optimized for unmanned flight is of great demand. Designing of a small scale UAV alternative to the AAI Aerosonde UAV has been considered changing the wing tail configuration of the vehicle analyzing both structural and aerodynamic performance improvements using COMSOL Multiphysics® software.

Scale-up Design of Ultrasound Irradiator for Advanced Oxidation Process (AOP) Using COMSOL Multiphysics® Simulation

Z. Wei[1]
[1]The Ohio State University, Columbus, OH, USA

Ultrasound is a promising green technology for the advanced oxidation process (AOP) since it adds no chemicals to the treated water. In this paper, COMSOL Multiphysics® was used as a tool to design and characterize an ultrasound irradiator with multi-stepped configuration, which aims to overcome disadvantages of typical irradiators and to enhance contaminant removal in large-scale water ...

Structural Analysis of the Advanced Divertor eXperiment's Proposed Vacuum Vessel

J. Doody [1], R. Vieira [1], B. LaBombard [1], R. Leccacorvi [1], J. Irby [1], R. Granetz [1]
[1] Plasma Science and Fusion Center - Massachusetts Institute of Technology, Cambridge, MA, USA

The goal of a tokamak is to use high magnetic fields to contain plasma and produce nuclear fusion that can be used for power generation. MIT’s Plasma Science Fusion Center (PSFC) and collaborators are proposing a machine, the Advanced Divertor eXperiment (ADX) to test new technology for these systems at reactor level heat fluxes and magnetic fields. COMSOL Multiphysics® software is used to ...

Laser-Ultrasonics Wave Generation and Propagation FE Model in Metallic Materials

A. Cavuto[1], G.M. Revel [1], M. Martarelli [2], F. Sopranzetti [2]
[1]Università Politecnica delle Marche, Ancona, Italy
[2]Università e-Campus, Novedrate (CO), Italy

A 2D axisymmetric model was considered in order to evaluate the propagation paths of the ultrasonic waves generated inside an aluminum plate sample due to a rapid thermal expansion produced by laser pulse. Laser Doppler Vibrometer is used to experimentally validate the numerical results of the wave propagation in the material. The presented numerical model is able to identify directivity ...

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

Uncertainty of FEM Solutions Using a Nonlinear Least Squares and Design of Experiments Approach

J. T. Fong [1], N. A. Heckert [1], J. J. Filliben [1], P. V. Marcal [2], R. Rainsberger [3]
[1] National Institute of Standards and Technology, Gaithersburg, MD, USA
[2] MPACT Corp., Oak Park, CA, USA
[3] XYZ Scientific Applications, Inc., Livermore, CA, USA

Uncertainty in COMSOL Multiphysics® software simulations due to (a) model parameter uncertainties and (b) mesh-induced truncation errors, is estimated using a design-of-experiments approach [1, 2, 3], and a nonlinear least squares logistics fit method [4, 5], respectively. Examples to illustrate both approaches are given using the COMSOL RF Module (in an application of a MRI coil design) and ...

The Refinement of the Contact Compression Ring Chamfer for Race Engine Conditions

M. Dickinson[1], N. Renevier[2], W. Ahmed[3]
[1]Racing to Research team, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, United Kingdom
[2]The Jost Institute, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, United Kingdom
[3]Institute of Nanotechnology and Bioengineering, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, United Kingdom

Use of COMSOL Multiphysics: In operation, the piston ring is surrounded by gas acting on it, using effect of chamfer design has been considered using Love’s equation in conjunction with Stone’s equation for force ad Miler’s equation for gas pressure modelling. The chamfer geometry was controlled through variable inputs such as coating thickness, ring thickness, distance from the ring angle ring ...

Two-Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

B. Ghose[1], K. Balasubramaniam[2], C.V. Krishnamurthy[3], and A.S. Rao[1]
[1] High Energy Materials Research Laboratory, Pune, Maharashtra, India
[2] Center for Non Destructive Evaluation, Department of Mechanical Engineering, IIT Madras Chennai, Tamil Nadu, India
[3] Department of Physics, IIT Madras,Chennai, Tamil Nadu, India

Ultrasonic Testing (UT) is one of the important Non-Destructive Evaluation (NDE) technique widely used for characterisation of materials as well as detection and characterisation of flaws present in the material used in various industries. There are many different important materials like metals, metallic alloys, rubber, composites etc used in aerospace industries is being inspected using UT as ...

Fluid-structure Interaction Modeling of Air Bearing

H.R. Javani[1], P. Kagan[2], F. Huizinga[1]
[1]ASML - MDev – Mechanical analysis, Veldhoven, The Netherlands
[2]ASML - MDev – System Dynamics, Veldhoven, The Netherlands

Air bearings are special type of bearings which provide nearly zero friction between two surfaces. This is achieved by a compressed layer of gas between the surfaces. This study presents a modeling technique for an Air bearing component. COMSOL Multiphysics® is used to efficiently solve a coupled Fluid-Structure Interaction analysis. Computational time is significantly reduced compared to ...