In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Semismooth Newton Method for Gradient Constrained Minimization Problem

S. Anyyeva, and K. Kunisch
Institute of Mathematics and Scientific Computing
Karl Franzens University
Graz, Austria

We treat a gradient constrained minimization problem which has applications in mechanics and superconductivity. A particular case of this problem is the elastoplastic torsion problem. In order to solve the problem we developed an algorithm in an infinite dimensional space framework using the concept of the generalized Newton derivative. The Desktop environment of COMSOL Multiphysics 4.1 was ...

Shape Optimization of Electric and Magnetic System using Level Set Technique and Sensitivity Analysis

Y. Sun Kim, A. Weddemann, J. Jadidian, S. Khushrushahi, and M. Zahn
Dept. of Electrical Engineering and Computer Science
MIT
Cambridge, MA

The classical optimization method has been applied to many design problems for electromagnetic systems. One of its major difficulties is related to meshing problems arising from shape modifications. In order to circumvent these kinds of technical difficulties with moving mesh problems, several researches have tried to formulate shape optimization with fixed mesh analyses based on fixed grid ...

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive simulation software to predict food safety and quality. The user interface allows the user to select the food, ...

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to ...

Highly Concentrated Solar Radiation Measurement by Means of an Inverse Method

L. Mongibello[1], N. Bianco[2], R. Fucci[1], F. Moscariello[2]
[1]ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
[2]DETEC - Università degli Studi di Napoli Federico II, Napoli, Italy

This work focuses on the numerical analysis conducted on the prototype sensor for the measurement of highly concentrated radiative heat fluxes, based on an inverse heat transfer method, realized at the ENEA Portici Research Center in collaboration with the DETEC department of the University of Naples Federico II. The estimates of highly concentrated radiative heat fluxes on the target surface of ...

Water Quality Model for Brewster Lake

Z. Aljobeh[1], G. Argueta[1]
[1]Valparaiso University, Valparaiso, IN, USA

A numerical model was developed to make spatial and temporal predictions of the water quality for Brewster Lake, located in southwestern Michigan. The model considers the hydrodynamics of the lake, hydrologic conditions, physical, chemical and biochemical processes that take place in the lake, and nutrient loadings from the surrounding watershed. Physical, chemical, and biochemical data ...

Multicomponent Diffusion Applied to Osmotic Dehydration - new

H. Cremasco[1], K. Angilelli[1], D. Borsato[1]
[1]Universidade Estadual de Londrina, Londrina, Paraná, Brazil

The transfer of sucrose and fructooligosaccharides to melon and water to solution was modeled based on generalized form of Fick’s second law for simultaneous diffusion and resolved by the finite element method using the software package COMSOL Multiphysics® software. The diffusion coefficients, the mass transfer coefficient and the Biot number were determined using the simplex optimization ...

The Effect of the Dispersion Term on Flux of a Fluid in Permeable Media

O. Toscanelli, and V. Colla
Scuola Superiore S. Anna
Pontedera, Italy

The flux of a fluid in permeable media can be modelled using a continuous. To link the real system with the continuous model is mandatory to realize a suitable average of the equations and of the variables. The dispersion term comes from this averaging but it is not only a mathematical product of the modelling. The dispersion is due to the intrinsic geometry of the permeable media that forces ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

COMSOL as an Aid in the Teaching (Learning) of Heat Transfer

R. López[1], J. Morales*[1], M. Vaca[1], A. Lizardi[1], H. Terres[1], G. Bautista[1], A. Lara[1]
[1]Universidad Autonoma Metropolitana, Tlalpan, Distrito Federal, Mexico

Several undergraduate programs include the “Heat transfer” subject and, in our experience, it is hard for the students to grasp the concepts that are presented in the course. With this in mind, we designed and constructed an apparatus for the experimentation of heat transfer in a short bar. It was observed, that the time required to perform the experiment was so long, that the didactic aim was ...