Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A ... Per saperne di più
In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program ... Per saperne di più
Liquid metals are foreseen as a multipurpose coolant in fusion blanket systems. However, the strongly magnetic environment of the fusion reactor hinders the regular flow of the liquid metal. It interacts with transverse magnetic field and produces a Lorentz force opposing the flow, ... Per saperne di più
Optical cavities play a major role in any spectroscopic setup. THz being invisible to normal human eye, designing a proper cavity for TDS setup becomes essential. Unlike the standard TDS setups for transmission geometry, the setups for reflection geometry is tricky in terms of alignment. ... Per saperne di più
The recently discovered Pockels effect in strained silicon has made silicon a promising candidate material for optical modulators and switches. In this work, we propose a model that links the electro-optic effect to the applied strain (in fact to the strain gradient). This model may be ... Per saperne di più
Two different Finite Element Method (FEM) models of the CANDU® nuclear fuel channels were compared against experimental data to determine if the curvature of the fuel channels is necessary to consider for measurements of the pressure tube to calandria tube gap. The different models were ... Per saperne di più
The paper presents the three dimensional (3D) Finite Element Method (FEM) COMSOL Multiphysics® model of a Three Phase Permanent Magnetic Excited Transverse Flux Machine (TFM). The model is fully parameterized and able to sweep over all parameters during design optimization process. The ... Per saperne di più
Acceleration is an important quantity to be measured in high-speed dynamics. A new piezoresistive sensor for the measurement of high-amplitude, short-duration transient accelerations of up to 100,000 g has been developed at the Fraunhofer EMI. Its figure of merit (sensitivity x resonance ... Per saperne di più
We demonstrate the accuracy of the Finite Element Method (FEM) to characterize an arbitrarily shaped crossed-grating in a multilayered stack illuminated by an arbitrarily polarized plane wave under oblique incidence. To our knowledge, this is the first time that 3D diffraction ... Per saperne di più
In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable ... Per saperne di più
