Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
This work uses COMSOL to simulate the Dielectric Barrier Discharge (DBD) lamp coupled to the external electrical circuit. The coupled system is modeled to capture the effect of the electrical parasitic elements on the efficiency of the DBD which is more realistic as compared to previous ... Per saperne di più
Electrostatic precipitation is an extremely efficient way of filtering fine particles from the airstream. Electrostatic precipitators (ESPs) can control airborne emission without significantly slowing down the rate of flow, because of the low pressure drop across this type of filters. A ... Per saperne di più
Concentrated photovoltaic systems with high efficiency solar cells are being widely investigated, aiming at improving the cost-efficiency balance in the solar energy field. Different cell types are in use: e.g., high concentration triple junction cells, reaching efficiencies of the order ... Per saperne di più
Study of neurons plays a key role in the fields of basic and medical research aiming at the development of electrically active implants. The Fitzhugh-Nagumo equations are used to model and simulate the spike generation and propagation in a squid giant axon using COMSOL Multiphysics® 3.5a ... Per saperne di più
Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and ... Per saperne di più
Magnetic cantilever measurements have detected half-flux states in mesoscopic rings of the layered material Sr2RuO4, adding evidence that superconducting Sr2RuO4 may be described by a p-wave order parameter. A proposal accounting for this behavior has been presented in which the ... Per saperne di più
The nanofluid is a class of fluids with high thermal conductivity and non-Newtonian flow behaviors. In this work, we present numerical simulations of spreading characteristics for nanofluids droplet impinging on the solid surface which is of great importance in a number of applications ... Per saperne di più
Perfectly matched layers (PML) are an efficient alternative for emulating the Sommerfeld radiation condition in the numerical solution of wave radiation and scattering problems. The key ingredient of the PML formulation is the complex scaling function, which controls the anisotropic ... Per saperne di più
This paper deals with numerical modeling of modular industrial induction heating of steel billets for hot forming applications using the COMSOL Multiphysics. A mathematical model based on Finite Element Method is presented. Design of induction heaters is constantly evolving and improving ... Per saperne di più
Passive, one-way valves, also known as check valves, while common at the macro scale, are an essential microfluidic feature that facilitate flow rectification. These structures are also commonly used in reciprocating micropump configurations to control flow. Their operation can be ... Per saperne di più