Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Design & Development of Helmholtz Coil for Hyperpolarized MRI

V. Bhatt, R.S Rautela, P. Sharma, D.C. Tiwari, and S. Khushu
Institute of Nuclear Medicine & Allied Sciences (DRDO), Delhi, India

The Helmholtz Coil generates a uniform magnetic field. The commercially available large-size Helmholtz coils prove to be very expensive. This paper describes the economical method of designing and construction of a Helmholtz coil. COMSOL Multiphysics AC/DC Module simulated results and actual results were compared in this study. The coil serves as a component in the system for Hyperpolarisation of ...

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Z. Zheng
School of Electronic and Information Engineering, Beihang University, Beijing, China

Design and optimization of the nanophotonic devices are critical in realizing advanced photonic integrations in the future. COMSOL can be used for simulating various types of nanophotonic devices involving different materials and dimensions. This report talks about some recent work of Prof. Zheng’s team, including the simulation of dielectric photonic waveguides, optic fibers and surface ...

Design of Small-Scaled de Laval Nozzle for IGLIS Experiment

E. Mogilevskiy[1], R. Ferrer[1], L. Gaffney[1], C. Granados[1], M. Huyse[1], Yu. Kudryavtsev[1], S. Raeder[1], P. Van Duppen[1]
[1]KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium

De Laval nozzles are used in supersonic aerodynamical tubes and engines. They are also employed for the production of cold gas jets to be used in chemical reactions studies. Recently, cold gas jets have been proposed of In-Gas Laser ionization Spectroscopy (IGLIS) The nozzle has a converging and a diverging part with a throat between them. High gas pressure and temperature, and low velocity are ...

Pedagogic use of COMSOL Multiphysics for Learning Numerical Methods and Numerical Modeling

J-M. Dedulle
L'ecole Nationale Supérieure de Physique de Grenoble

The students at ESPNG have, since 2002, been using COMSOL Multiphysics in order to master physical phenomena and the finite element method. We developed several projects based on the modeling of physics phenomena, and, in this paper, we present projects based on Physical Vapor Transport and Magnetic Levitation. --------------------------------- Keynote speaker's biography: Jean-Marc ...

Thermal Simulations of a LED Light Using COMSOL Multiphysics

M. Maaspuro[1]
[1]University of Turku, Turku, FInland

An experimental LED light composed of a multi-chip LED-module, a LED driver and an efficient heat sink, was investigated using COMSOL Multiphysics software and the Heat Transfer Module. In an LED light heat is mainly generated in the LEDs but some amount of heat is generated also in the LED driver. The main target of the simulations was to resolve the junction temperatures of LEDs, the most ...

Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment

S. Gorelick[1], M. Leivo[1], U. Kantojärvi[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland

Excessive air damping can be detrimental to the performance of oscillating MEMS components. Complex systems, such as structures in pre-etched cavities or angular comb-drive scanning mirrors, typically require simulations to reliably evaluate the air damping. The simulated and experimental performance of the following systems was evaluated and compared: two types of out-of-plane cantilevers, ...

Heat and Mass Transfer in Convective Drying Processes

C. Gavrila[1], A. Ghiaus[1], and I. Gruia[2]
[1]Technical University of Civil Engineering Bucharest, Faculty of Building Services, Bucharest, Romania
[2]University of Bucharest, Faculty of Physics, Bucharest, Romania

A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady convective drying of agricultural products (fruits and vegetables) in static bed conditions. The model utilizes water sorption isotherm equations and the change in solid density due to the shrinkage phenomenon. The aim of this article is to describe ...

Surface Plasmon Resonance

J. Crompton[1], S. Yushanov[1], L.T. Gritter[1], K.C. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The resonance conditions for surface plasmons are influenced by the type and amount of material on a surface. Full insight into surface plasmon resonance requires quantum mechanics considerations. However, it can be also described in terms of classical electromagnetic theory by considering electromagnetic wave reflection, transmission, and absorption for the multi-layer medium. The two commonly ...

Heat Transfer and Phase Transformation on Matrix Assisted Pulsed Laser Evaporation (MAPLE) of Biocompatible Thin Layers

E. Lacatus[1], G.C. Alecu[1], M.A. Sopronyi[2], A. Tudor[1]
[1]POLITEHNICA University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique is used for the deposition of high quality biocompatible polymer thin films. During the deposition process the temperature of the laser target should be kept below 193K to assure the proper quality of both evaporation and deposition phases of the process. On a first approach COMSOL Multiphysics® was used to describe and analyze the ...

Towards Modelling Semiconductor Heterojunctions

R. Millett[1], J. Wheeldon[2], T. Hall[1], and H. Schriemer [1,2]
[1] Centre for Research in Photonics, School of Information Technology and Engineering, University of Ottawa, Canada
[2] Centre for Research in Photonics, Dept. of Physics, University of Ottawa, Canada

A 2D multiphysics model has been developed to simulate heterojunctions separating abruptly doped semiconductor layers of different dopant concentrations. Numerical results are presented for the case of nN, pN and PpN heterojunctions, and a general procedure for simulating multiple heterojunctions is described.

Quick Search