In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Optimizing the Performance of MEMS Electrostatic Comb-Drive Actuator with different Flexure Springs

S. Gupta[1], T. Pahwa[1], R. Bansal[1], V. Bansal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department Kurukshetra University, Kurukshetra, Haryana

A new design of electrostatic comb drive actuator is presented in this paper by using different spring designs and with different folded beam lengths. An increased displacement of lateral comb drive actuator will subsequently be accomplished with the same actuation voltage. Stress distribution over different spring designs are simulated by COMSOL 3.5a using a standard comb drive with 4 movable ...

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software

L. Wang [1],
[1] Konica Minolta Laboratory USA, Inc., San Mateo, CA, USA

Organic light emitting diode (OLED) is an emerging technology for next-generation flat panel display and solid-state area lighting thanks to its many advantages such as light weight, low operating voltage, and flexibility, etc. A typical OLED has a multilayer structure that includes a glass or plastic substrate, an anode (ITO), a hole transport layer (HTL), an emitting layer (EML), an electron ...

Analysis of Burning Candle

J.S. Crompton, L.T. Gritter, S.Y. Yushanov, and K.C. Koppenhoefer
AltaSim Technologies LLC, Columbus, OH, USA

Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle wax leads to a phase change that allows mass transport via capillary flow prior to combustion in the flame. ...

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, we consider a system of two time-dependent non-linear PDEs from mathematical biology that couples an ...

Design and Simulation of Unimorph Piezoelectric Energy Harvesting System

E. Varadarajan[1], M. Bhanusri[2],
[1]Research and Innovation Centre (RIC), IITM Research Park, Chennai, Tamil Nadu, India
[2]Department of Physics, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India

In this paper we made an attempt to maximize the power output in the different piezoelectric materials in a unimorph cantilever beam configuration. In this research, a macro scale unimorph piezoelectric power generator prototypes consists of an active piezoelectric layer, stainless steel substrate and titanium proof mass was designed for frequencies 60 Hz - 200 Hz. An analytical model of a micro ...

Design of a MEMS Capacitive Comb-drive Accelerometer

T. Kaya[1], B. Shiari[2], K. Petsch[1], and D. Yates[2]
[1]Central Michigan University, School of Engineering and Technology, Mount Pleasant, MI
[2]University of Michigan, Dept. of Electrical Engineering and Computer Science, Ann Arbor, MI

In this work, a MEMS low-g accelerometer with three sensitive directions is designed for health monitoring applications. The accelerometer may have different sensitivity in different axes. The proof-mass of the device is suspended by four serpentine springs, and the comb drive structure is used to form the differential capacitor to measure the displacement of the proof-mass. The structure has an ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Thermo Mechanical Analysis of Divertor Test Mock-up using COMSOL Multiphysics

Y. Patil[1], D. Krishnan[1], S. S. Khirwadkar[1]
[1]Institute for plasma research, Bhat, Gandhinagar, Gujarat, India

Divertor is act as an exhaust for the nuclear fusion reactor. Main function of a divertor is to remove the heat flux from the plasma. Plasma facing components of the divertor are made up of Carbon (Graphite/CFC) and tungsten like materials[1]. Hence these materials are exposed to the transient heat loads up to 10MW/m^2. Thermo mechanical behavior of Graphite test mock-up under the transient heat ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...