In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Optimization Of The Collection Of Sprays By An Enhanced Electronic Sensor

J. Berges[1], B. Barelaud[1], I. Niort[2], and J.L. Decossas[2]
[1]XLIM, Limoges, France
[2]Université de Limoges, France

We propose the study of an electronic sensor allowing the collection of sprays in free space. The detector consists of three elements: a photodiode situated in the center of the structure to which is applied a bias voltage, an aluminum ring which referenced to a voltage higher than that of the photodiode and an insulating material disk (polyvinyl chloride). The total size of the structure is ...

Simulation Of Soil Remediation Polluted By Hydrocarbons Using A Non-Thermal Atmospheric Plasma

J. Rojo, S. Ognier, and S. Cavadias
Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, University Pierre et Marie Curie, Paris, France

A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent treatment of the generated gases or liquids. Of all the decontamination methods, bioremediation appears to be the ...

Design and Characterization of a Novel High-g Accelerometer

S. Heß, R. Külls, and S. Nau
Fraunhofer Ernst-Mach-Institut
Efringen-Kirchen, Germany

The Fraunhofer Ernst-Mach-Institute (EMI) developed a novel, high-g accelerometer, which is an undamped MEMS device, containing self-supporting piezoresistive elements. The main requirements for such a sensor are high sensitivity, high resonant frequency and a solid mechanical design. Due to the fact, that pure analytic analyses cannot cover all multi-physical aspects of such a complex device ...

Modeling of Atmosphere Revitalization

R. Coker[1], J. Knox[1], K. Kittredge[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

All spacecraft systems must be minimized with respect to mass, power, and volume. Here, we focus on current efforts to improve system efficiency and reliability for water separation systems to be used on crewed vehicles. These development efforts combine sub-scale systems testing and multi-physics simulations to evaluate candidate approaches. The best performing options will then be ...

RF Hot-Zone Location within Rectangular Confined Spaces

R. Rodriguez[1]
[1]University of the West Indies, St. Augustine, Trinidad and Tobago

RF propagation modelling in (30 – 1000 MHz) SAR region for predicting the location and intensities of constructive interference patterns within rectangular confined spaces using waveguide theory and ray tracing techniques.

COMSOL Multiphysics® Model of Canine Elbow for Use in Investigating Medial Coronoid Disease

K. A. Bodnyk[1], G. J. Noble[1], N. Fitzpatrick[2], M. J. Allen[3], K. Stephenoff[1], R. T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
[2]Fitzpatrick Referrals, Godalming, Surrey, United Kingdom
[3]Department of Veterinary Medicine, The Ohio State University, Columbus, OH, USA

The elbow joint in dogs constitutes a complex interaction of three bones, the humerus, radius and ulna. Medial coronoid disease (MCD) is a common cause of lameness in dogs, i.e. fracturing of the most prominent portion of the ulnar joint surface driven in flexion and in pivot against both the humerus and the radius. The cause remains unknown, but prior studies suggest joint incongruency as an ...

Application for Ultrasensitive Biosensing by Nanodevise

[1]Takatoki YAMAMOTO

Tokyo Institute of Technology, Yokohama, Kanagawa, Japan[1]

It is possible to obtain novel functions using nano-scaled structures and related physics that are impossible to be realized by conventional macro-scale technology. Thus, we are trying to understand the physics dominated by nanostructure and to develop the biosensing applications. Here, we exploit the interaction between materials and electrostatic field created by nanostructure, and introduce ...

Chemical Reaction under Highly Precise Microwave Irradiation

Satoshi Fujii et al.[1]

[1]Chiba University, Chiba, Chiba, Japan

Chemical reactions conducted under microwave irradiation have high reaction rates and high selectivity, but these reaction rates are not always reproducible. To achieve reproducibility, a solid-state microwave source with an ultra precise oscillator, high power amplifier module (HPA), and elliptical applicator is developed. This HPA has up to 141 W average power and generates pure 2.45-GHz sine ...

Interpretation of Measurements with Novel Thermal Conductivity Sensors Suitable for Space Applications

N. I. Kömle[1], G. Kargl[1], E. Kaufmann[2], J. Knollenberg[2], and W. Macher[1]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]DLR Institut für Planetenforschung, Berlin, Germany

Thermal conductivity of near surface soil layers is a key parameter for understanding the energy balance of planetary bodies. To measure this property, heated needle sensors are frequently used in field and laboratory applications. To adapt this type of sensors for application on space missions, various modifications have to be implemented. An example for such a modified sensor is the so ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

3221 - 3230 of 3379 First | < Previous | Next > | Last