Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
The current and energy transfer to cathodes of vacuum arcs usually occurs in bright, narrow regions, known as cathode spots. Owing to extreme conditions in these spots, the cathode surface is eroded: electrode material is vaporized, and craters and molten metal jets are formed. The study ... Per saperne di più
Nuclear fusion represents a promising solution for providing clean and sustainable energy. However, to support fusion reactions, tritium, a rare isotope, must be continuously produced within the reactor. Breeding blankets, which surround the plasma, produce this tritium. These components ... Per saperne di più
COMSOL Multiphysics® with LiveLink™ for Matlab® is used for the numerical analysis of dielectric barrier discharges (DBD), which are widely used in various fields of plasma technology, such as surface processing, plasma medicine, and agriculture. The fluid model comprises balance ... Per saperne di più
Plasma gasification of biomass is emerging as an efficient way to reduce the carbon foot print of waste management while generating renewable energy. In general, gasification is a process where electromagnetic wave energy is used to heat biomass sufficiently to convert the bio-mass to ... Per saperne di più
Plasma gasification of biomass is emerging as an efficient way to reduce the carbon foot print of waste management while producing renewable energy. In general, gasification processes heats waste to a temperature at which it is partially ionized and converted to synthesis gas (syngas). A ... Per saperne di più
Exciting plasma in inductive mode is attractive due to the high electron density and the absence of ion interaction with the reactor walls. However, any real system excites plasma at low power in capacitive mode with strong interaction with the walls. The transition from one mode to the ... Per saperne di più
In 2016 the group of experimentalists from the Institute of High Current Electronics (Tomsk, Russian Federation) have been discovered a novel phenomenon related to atmospheric plasma jets that was called an “apokamp” (originated from Greek words “off the bend”). This new plasma jet ... Per saperne di più
The stellarator concept developed by Renaissance Fusion makes use of a lithium free surface flow surrounding the plasma fusion core. Understanding the instability mechanism of this flow is of primary importance for controlling it. We use COMSOL Multiphysics® to solve the 1D linear ... Per saperne di più
Thermal decomposition of plastic waste results in gas products, mainly hydrocarbon molecules (C2-C6), which cannot be released to the atmosphere for environmental reasons. Here, we propose a secondary gas treatment to decompose the hydrocarbon gas products into smaller molecules by ... Per saperne di più
Atmospheric-pressure plasma jets (APPJ) are devices that generate chemically reactive species and operate at atmospheric pressure and ambient temperature for a wide range of applications. Plasmas jets produce charged particles (electrons and ions), neutral metastable species, radicals, ... Per saperne di più
