In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Acoustic streaming flows in discharge lighting

T. Dreeben
Osram Sylvania, Beverly, MA, USA

Thomas Dreeben received his B.A. in Philosophy and Mathematics in 1985, and his Ph.D. in Mechanical Engineering in 1997, both from Cornell University. He has worked in automotive fuel systems at Ford Motor Company, and in turbulence at Sandia National Laboratories. He currently works in lighting research at OSRAM SYLVANIA, where his modeling focuses on fluid mechanics and heat transfer as they ...

Physical and FEM Simulation of Microprobe Insertion into Brain Tissue

A. Eed Olamat, U. Hofmann, B. Pohl, and N. Nkemasong
University of Lübeck, Institute for Signal Processing, Lübeck, Germany

In order to investigate the implantation of microprobes into brain tissue, we developed a finite-element and a physical model to replace real biological tissue for mechanical testing. Penetrating forces of a tungsten indenter into a layered structure was investigated with different indentation speeds. Numerical and physical model are in good correspondence to each other and reproduce measured ...

Formation Of Porosities During Spot Laser Welding : Case Of Tantalum Joining

C. Touvrey
CEA Valduc, France

During the welding of tantalum with a ND: YAG pulsed laser, a deep and narrow cavity, called the keyhole, is formed. At the end of the process, surface tension forces provoke the collapse of the keyhole. For important interface deformations, gas bubbles can be trapped into the melting pool. If the solidification time is insufficient, these bubbles give birth to residual porosities. The aim of ...

Thermal FEM Simulation Of A Multilevel Lab On Chip Device For Genetic Analysis

E. Giuri, A. Ricci, and S.L. Marasso
Politecnico di Torino, Materials Science and Chemical Engineering Department, Turin, Italy

In this work, time dependent thermal analyses, performed on the 3D FE model of a multilevel Lab on Chip (LOC) platform are executed in order to gain insight into the temperature distribution within the device. By means of the COMSOL Multiphysics CAD import module, an extremely close 3D reproduction of the actual device, allowing to probe temperatures in those regions where an experimental ...

Drying In Porous Media: Equilibrium And Non-Equilibrium Approaches For Composting Processes

A. Pujol[2], S. Pommier[3], G. Debenest[2], M. Quintard[2], and D. Chenu[1]
[1]Veolia Environnement, Limay, France
[2]IMFT, Toulouse, France
[3]INSA Toulouse, Toulouse, France

To understand origins and consequences of drying phenomenon during composting, a compositional drying model of a partially water-saturated porous media coupled with biodegradation has been developed. The different simulations carried out under COMSOL Multiphysics demonstrate the ability of the model to well describe the compositional drying of a partial water-saturated porous media and point out ...

Long Term Performance Of Borehole Heat Exchanger Fields With Groundwater Movement

S. Lazzari, A. Priarone, and E. Zanchini
DIENCA, University of Bologna, Bologna, Italy

A numerical investigation of the long-term performance of double U-tube borehole heat exchanger (BHE) fields, in the case of non-negligible effects of groundwater movement, is performed by means of COMSOL Multiphysics. Two time periodic heat loads, with a period of one year, are studied: Q1, with a partial compensation between winter heating (principal load) and summer cooling; Q2, with no ...

Radiofrequency Inductive Coupled Plasmas Towards Low Pressure

M. Cavenago
Laboratori Nazionali di Legnaro
Legnaro, Italy

Inductively coupled plasmas (ICP) are largely used as a convenient way to produce large ion currents in industrial applications and for particle accelerators and for the Neutral Beam Injectors (NBI) envisioned for tokamak heating (ITER project and beyond). Among specifications we have operation with gas pressure as low as possible (0.3 Pa). A multiphysics model of some major processes is here ...

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

COMSOL Multiphysics Modelling for Measurement Device of Electrical Resistivity in Laboratory Test Cell

C. Rémi, M. Bergeron, and S. Moreau
Antony, France

Bioreactor landfill is based on a homogeneous distribution of the moisture content to increase waste biodegradation. Most of studies have shown that Electrical Resistivity Tomography (ERT) can be a suitable method to study water content variation (2D and 3D). ERT is influenced by many physical parameters and no single relationship with volumetric water content was yet established for Municipal ...

Multiphysics Modeling of Electro-Optic Devices

J. Toney
Srico, Inc.
Columbus, OH

Designers of electro-optic modulators and related devices often use separate tools to study the optical and electrical portions of the device. The flexibility of COMSOL Multiphysics makes it possible to construct unified models of EO phenomena including realistic waveguide profiles and anisotropic material properties. We demonstrate the use of the RF Module to compute both RF and optical ...

2741 - 2750 of 3390 First | < Previous | Next > | Last