In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modeling of Horizontal GSHP System for Greenhouse

M. Aydin [1], A. Gultekin [1],
[1] Energy Institute, Istanbul Technical University, Istanbul, Turkey

Greenhouses need heating supply most of the time of a year. Their heating demands are high and economical heating systems are very important for this kind of facilities. Horizontal ground source heat pump systems are getting more interest last years for being easy to apply and low initial cost. However, they need a wide area to apply. In this study, the heating system of a greenhouse is ...

Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode

S. Han [1], M. Polanco [2], S. Bawab [2], H. Yoon [1]
[1] Norfolk State University, Norfolk, VA, USA
[2] Old Dominion University, Norfolk, VA, USA

Neural electrodes for sensing neurotransmitters are embedded within the brain, detecting electrical signals produced by kinetic reaction of neurotransmitters in the brain. Sensing utilizes cyclic voltammetry (CV), which applies sweeping potentials to identify chemical kinetics of neurotransmitters. During in-vivo sensing, electrochemical sensing signals can be significantly disturbed by internal ...

Modeling Nanoscale Heat Flow

S. Palaich, and B. Daly
Physics and Astronomy Department, Vassar College, Poughkeepsie, NY, USA

When the dimensions of the material approach is a comparable size to the phonon mean free path, heat flow enters a new regime, the nanoscale. The Fourier and Cattaneo Equations describe bulk heat flow well, but radiative boundary terms must be considered when modeling nanoscale heat flow. We take these equations and input them into COMSOL with the hope of eventually linking nanoscale and bulk ...

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

Investigation of Stability of Current Transfer to Thermionic Cathodes

M. Benilov, and M. Faria
Departamento de Física, Universidade da Madeira, Funchal, Portugal

Current transfer from high-pressure arc plasmas to thermionic cathodes may occur in a diffuse mode, when the current is distributed over the front surface of the cathode, or in a spot mode, when most of the current is localized in one or more small areas. Spectra of perturbations of 3D steady-state current transfer to thermionic cathodes of a high-pressure argon arc have been computed in the ...

Modeling of the Transport Phenomena in Lithium-Ion Battery Electrolytes

A. Nyman, M. Behm, and G. Lindbergh
Applied Electrochemistry, School of Chemical Science and Engineering, Royal Institute of Technology Stockholm, Sweden

Modeling of mass transport is an important step in evaluating lithium-ion battery electrolytes and understanding cell performance. For high-power applications, concentration gradients in the electrolyte lead to limiting currents, which limit the power-density of the battery. The model has been used for determining a complete set of transport and thermodynamic properties for LiPF6 dissolved in an ...

Modelling Waste Water Flow in Hollow Fibre Filters

I. Borsi[1] and A. Fasano[1]
[1]Dipartimento di Matematica U. Dini, Università di Firenze, Firenze, Italy

In this paper we present a model to describe the process of waste water filtration based on hollow-fibre membrane filters. In particular, we deal with membranes whose pores diameter is in the range 0.01-0.1 µm. The main problem in these filtering systems is the membrane fouling. The mathematical model consists in two equations for the Darcy's flow through the filter, coupled with an ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize ...

Drying In Porous Media: Equilibrium And Non-Equilibrium Approaches For Composting Processes

A. Pujol[2], S. Pommier[3], G. Debenest[2], M. Quintard[2], and D. Chenu[1]
[1]Veolia Environnement, Limay, France
[2]IMFT, Toulouse, France
[3]INSA Toulouse, Toulouse, France

To understand origins and consequences of drying phenomenon during composting, a compositional drying model of a partially water-saturated porous media coupled with biodegradation has been developed. The different simulations carried out under COMSOL Multiphysics demonstrate the ability of the model to well describe the compositional drying of a partial water-saturated porous media and point out ...

Finite Element Analysis of Multilayer Transmission Lines for High-Speed Digital Interconnects

S.M. Musa, and M.N.O. Sadiku
Prairie View A&M University, Prairie View, TX, USA

In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We ...