In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Ferromagnetic Materials for MEMS- and NEMS-Devices

A. Weddemann, J. Jadidian, S. Khushrushahi, Y. Kim, and M. Zahn
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge MA

The modeling of ferromagnetic materials is a challenging task of high industrial and academic impact. Thin film and granular systems form the basis of novel spintronic devices such as modern hard drives with a high data area storage density. In order to push the current limits even further and to design more efficient devices, a strong understanding of the governing dynamics is required. We ...

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...

Ventilation System of a Microwave Assisted Drying Kiln

A.-G. Ghiaus[1], M.-A. Istrate[1], A. Georgescu[1]
[1]Technical University of Civil Engineering, Bucharest, Romania

The paper presents the analysis and optimization of the ventilation system inside of a drying lumber kiln. As with any part of the manufacturing process, improper drying techniques cause quality degradation and considerable amount of energy loose. The improvement and optimization of air distribution systems in drying kilns contributes to the preservation of the wood quality. The performance of ...

COMSOL Multiphysics Super Resolution Analysis of a Spherical Geodesic Waveguide Suitable for Manufacturing

H. Ahmadpanahi[1], D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Recently it has been proved theoretically (Miñano et al, 2011) that the super-resolution up to ? /500 can be achieved using an ideal metallic Spherical Geodesic Waveguide (SGW). This SGW is as a theoretical design, in which the conductive walls are considered to be lossless conductors with zero thickness. In this paper, we study some key parameters that might influence the super resolution ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Modeling Low Frequency Axial Fluid Acoustic Modes in Continuous Loop Piping Systems

E. Gutierrez-Miravete[1], E.R. Marderness[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Industrial fluid systems often involve continuous piping loops. These systems consist of varying lengths of pipes and hoses connecting multiple components together. Fluid resonances can detrimentally affect the operation of fluid systems and components. This work used COMSOL to investigate the frequency and mode shapes of axial fluid resonances within a system of piping and components that ...

Multiphysics Modeling and Simulation of MEMS based Variometer for Detecting the Vertical Speed of Aircraft in Avionics Applications

K. Umapathi[1], K. Sukirtha[2], C. Sujitha[2], K. A. Noushad[2], Venkateswaran[1], R. Poornima[1], R. Yogeswari[1]
[1]United Institute of Technology, Coimbatore, Tamil Nadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two micro electrodes. The micro diaphragm is placed on one of the electrode. As the aircraft changes altitude, the ...

Simulation and Analysis of Two Fans Air Speed Match Design in Off-Road Mine Tract Generator Using COMSOL

Y. Shen[1], D. Wu[1]
[1]Beijing University of Science & Technology, Beijing, China

This paper describes a model of self-ventilated generator cooling on a 170 tons off-road mine dump truck. Considering the space restrictions of mine dump truck, the cooling systems for the generator and the in-wheel motors of the rear axle share one air inlet duct. With the action of generator fan and rear duct fan, cooling air from the inlet duct will be divided into two parts to cool the ...

Modelling of a 5 Cell Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) Stack: Analysis of Flow Configuration and Heat Transfer

A.S. Chandan[1], A. Mossadegh Pour[2], R. Steinberger-Wilckens[2]
[1]Centre for Hydrogen and Fuel Cell Research, University of Birmingham, Birmingham, United Kingdom
[2]University of Birmingham, Birmingham, United Kingdom

Polymer Electrolyte Fuel Cells (PEFCs) are a key technology in the advancement of society towards a low carbon future, in particular for use within the automotive sector. PEFCs are advantageous due to their low operating temperature (60-80 deg.C), quick start up times and responsiveness to load change. However, the requirement for expensive platinum, difficulty of water management and heat ...

Convective Cooling of Electronic Components - new

J. S. Crompton[1], H. Singh[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, LLC, Columbus, OH, USA

In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating temperature of devices result. To maintain operation and long term performance device temperature must be ...

2671 - 2680 of 3394 First | < Previous | Next > | Last