Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
Drying of biomaterials such as foodstuffs involves mass, momentum and energy transport along with large shrinkage of the porous material, which have significant effects on their final quality. Foodstuffs exhibit non-linearity when undergoing large deformations that affect the transport ... Per saperne di più
In this presentation, we study the modeling of physiology and muscoskeletal biomechanics using COMSOL. The outline for the presentation is in particular: Why is COMSOL particularly powerful for modeling physiology? Modeling soft tissues like cartilage Optimization to determine soft ... Per saperne di più
Operation in strong magnetic fields, vacuum or high precision positioning has often surpassed the limits of traditional actuators. Piezoelectric motors provide a suitable alternative in these applications where non-ferromagnetic based construction or low inertia may be required. We ... Per saperne di più
The propagation of shear (S) and compression (P) waves within the earth allows geologists to track seismic events and to identify subterranean structure. This work shows the strong effect of including the variation of wave speed through the top thirty meters of the earth. By including ... Per saperne di più
In this study, a 2-D model has been built using COMSOL Multiphysics® to analyze a triple coupled physics problem involving simultaneous gas diffusion, heat transfer, and structural mechanics in a pipe due to the flow of high-pressure carbon dioxide. The problem geometry and boundary ... Per saperne di più
Non-contacting guided wave tomography based on laser ultrasonic waves can be used to inspect structures that are inaccessible to traditional ultrasound methods. Such structures could be, chemically or physically hard to reach, e.g. hot metal structures, metal implants inside tissue or ... Per saperne di più
Some types of mechanical devices, such as molds, but not only, include a large number of micro-mechanisms, valves, channels, vents, or other devices subject to deterioration or malfunctioning, frequently caused by unwelcome phenomena such as incrustations, fillings, or reciprocal bonding ... Per saperne di più
Advancements in simulation technology are supported by rapidly evolving enablers such as Cloud infrastructure, high-performance computing platforms (on & off-premises), on-demand Machine Learning systems, and secure multi-user environments. These advancements provide an opportunity ... Per saperne di più
An energy pile harvests geothermal energy to heat and cool a building by integrating ground heat exchanger (GHX) pipes into the building’s deep foundation, and extracts heat from the ground in the winter to heat buildings and injects heat into the ground during the summer. In areas with ... Per saperne di più
高分子囊泡是一类由薄膜包裹液体而形成的“软粒子”,其在生物医药、化妆品以及食品等领域具有广泛的应用,是材料领域最富有意义的研究内容之一。与一般微纳米粒子相比,高分子囊泡在外场作用下极易发生形变,因而研究高分子囊泡在微流道中穿过受限孔洞的动力学行为对其在药物输运、细胞筛选、薄膜性能表征等应用领域具有重要的意义。 由于流体(高分子囊泡内部和外部流体)和固体(高分子囊泡膜)强烈地耦合在一起,再加上流体与膜边界的移动和变形,使得高分子囊泡实际的过孔图像十分复杂。本工作借助COMSOL Multiphysics流固耦合(FSIs)接口,运用任意拉格朗日-欧拉(ALE)算法 ... Per saperne di più
