Quick Search

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

The Effect of Space Charge due to the Auto-Ionization of Neutral, Hydrogenic States in Point-Contact Germanium Detectors at MilliKelvin Temperatures - new

D. Faiez[1], N. Mirabolfathi[1], B. Sadoulet[1], K. M. Sundqvist[2]
[1]Department of Physics, University of California - Berkeley, Berkeley, CA, USA
[2]Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA

A class of semiconducting detectors, operated at temperature T~50mK, has direct application to the search for dark matter particle, when are able to simultaneously measure both the ionization and phonons created by particle interactions. We explore the effect of space charge accumulation in a germanium p-type point contact detector which arises due to the auto-ionization of hydrogenic ...

Modeling of III-Nitride Quantum Wells with Arbitrary Crystallographic Orientation for Nitride-Based Photonics

M. Kisin, R. Brown, and H. El-Ghoroury

Ostendo Technologies, Inc., Carlsbad, CA, USA

A program for self-consistent modeling of electron-hole energy spectrum and space-charge distribution in III-nitride based quantum well (QW) structures has been developed. The model takes into consideration full 6-band description of the valence band states, nonparabolicity of the electron spectrum, quantum confinement of electrons and holes, strain induced modifications of the band structure, ...

COMSOL Multiphysics Super Resolution Analysis of a Spherical Geodesic Waveguide Suitable for Manufacturing

H. Ahmadpanahi[1], D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Recently it has been proved theoretically (Miñano et al, 2011) that the super-resolution up to ? /500 can be achieved using an ideal metallic Spherical Geodesic Waveguide (SGW). This SGW is as a theoretical design, in which the conductive walls are considered to be lossless conductors with zero thickness. In this paper, we study some key parameters that might influence the super resolution ...

Drift-Diffusion and Ballistic Transport Modeling in III-Nitride Multiple-QW Light Emitting Structures

M.V. Kisin, and H.S. El-Ghoroury
Ostendo Technologies Inc., Carlsbad, CA, USA

COMSOL-based modeling software developed at Ostendo Technologies allows detailed simulation of semiconductor lasers and light-emitting diodes. In this work, we study the inhomogeneity of the carrier injection into optically active quantum wells of polar and nonpolar III-nitride light emitters. Despite the absence of polarization-induced potential barriers, the nonpolar multiple-quantum well ...

Purcell Effect via Numerical Simulation - new

I. Zabkov [1], V. Klimov[1], A. Pavlov[1], D. Guzatov[2]
[1]All-Russia Research Institute of Automatics (VNIIA), Moscow, Russia
[2]Yanka Kupala State University of Grodno, Grodno, Belarus

As it is known nano-sized emitters (such as atoms, quantum dots and point defects in diamonds) interaction with nano-environment leads to drastic changes of their decay rate and therefore lifetime (Purcell effect). To calculate the influence in general one needs to solve equations of quantum electrodynamics. However in weak interaction limit these emitters can be considered as point electric ...

Electromagnetic Analysis of an Optical Measuring Device Installed in a Transmission Line - new

C. Soares[1], N. Padoin[1], A. C. Zimmermann[1], G. Cunha[2], P. B. Uliana[2], M. Wendhausen[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]PowerOpticks Technology Ltda, Florianópolis, SC, Brazil

In this study, COMSOL Multiphysics® software was applied to the investigation of the electromagnetic behavior of an optical crystal submitted to the magnetic field generated by electric current in a near positioned metallic conductor. Moreover, the influence of a ferromagnetic apparatus (magnetic concentrator) on the magnetic field acting upon the crystal was investigated. Three cases were ...

Theoretical Study Of Porous Silicon Waveguides And Their Applicability For Vapour Sensing

T. Hutter[1], N. Bamiedakis[2], and S. Elliott[1]
[1]Department of Chemistry, University of Cambridge, UK
[2]Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, UK

The finite-element method (FEM) (COMSOL RF Module) has been employed for modal analyses of porous silicon (PSi) waveguides composed of a guiding layer of low porosity (high refractive index) on a cladding layer with higher porosity (lower refractive index). These can be made by switching the current density from a lower to a higher value during the electrochemical etching process. The ...

FEM Simulations of Rod-Type Photonic Crystal Slabs as Resonant Microsystems for Optical Gas Sensors

C. Kraeh, and H. Hedler
Siemens AG, Munich
Munich, Germany

We are developing a solid state gas sensor that combines a small form factor with the high sensitivity of optical gas detection. The gas sensor is based on an optical resonant microsystem that is penetrated by gas molecules. This microsystem consists of an array of vertical rods in air forming a photonic crystal. Light propagates through the photonic crystal along a line defect waveguide. For ...

Accurate Parameters Extraction of Multiconductor Transmission Lines in Multilayer Dielectric Media

S. Musa[1], M. Sadiku[1], and O. Momoh[2]
[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Indiana University-Purdue University

Development of very high speed integrated circuits is currently of great interest for today\'s technologies. This paper presents the quasi-TEM approach for the accurate parameters extraction of multiconductor transmission lines interconnect in single, two, and three-layered dielectric regions using the finite element method (FEM). We illustrate that FEM is accurate and effective for modeling ...

Determination of the Optical Properties of Individual Gold Nanorods through Numerical Modeling and Experiment

Y. Davletshin[1], J.C. Kumaradas[1]
[1]Ryerson University, Toronto, ON, Canada

The optical scattering and absorption of gold nanorods (GNRs) depends on its size, shape, and surroundings. This dependence is due to both intrinsic and extrinsic effects. A good understanding of this dependence is needed for applications of GNRs in photo-thermal therapy, optical and opto-acoustic imaging, biosensing, and other photonic areas. Extrinsic effects are caused by the production of ...