In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

Heating of Metal Nanoparticles on Absorbing Substrates

L. Bergamini [1], O. Muskens [2], N. Zabala [1], J. Aizpurua [3]
[1] UPV/EHU, Bilbao, Spain; Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain
[2] University of Southampton, Southampton, UK
[3] Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain

It is well-known that metal nanoparticles (NPs) excited at the plasmon frequency not only exhibit peculiar optical properties (e.g., a peak in the extinction spectrum, an enhanced electromagnetic near-filed) but also heat up [1]. This phenomenon is highly investigated for medical applications, but it can be exploited also for the realization of optical devices. In our study we use COMSOL ...

Doping Dependent I-V Characteristics of Single Silicon Nanowire

S. Mishra [1], S. K. Saxena [1], P. Yogi [1], P. R Sagdeo [1], R. Kumar [1],
[1] Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

In the present work, we have studied the electron transport properties of single silicon nanowire using Semiconductor Module of COMSOLMultiphysics software. We construct a MSM (metal-semiconductor-metal) model where metal is selected as copper and semiconductor is taken as silicon. Silicon is doped with n-type impurity by increasing doping concentration. Further, the Schottky diodes formed at ...

Bipolar Charge Transport Model of Insulators for HVDC Applications

Y.-i. Joe [1]
[1] LS Cable and System, South Korea

Charge transport behavior must be considered in developing HVDC design. In microscopic level, the space charge and conduction mechanisms are related with energy band‐gap and shallow/deep trap distribution and these come from chemical defects, physical disorder and impurities or by‐products. Macroscopic model is implemented by COMSOL Multiphyiscs® software. * Electrostatics Electrostatics, ...

Modeling of a Nonlinear Hybrid Plasmonic Waveguide for Enhanced Surface Plasmon Polaritons Through Optical Parametric Amplification

D. Wang[1], T. Li[1], S. Wang[1], S. Zhu[1]
[1]Nanjing University, Nanjing, Jiangsu, China

Surface Plasmon Polaritions (SPPs), as electromagnetic waves localized at the surface of a metal, enjoy the unique properties to confine energy into sub-wavelength scale, which is beneficial for future photonic integration. However, the severe absorption caused by the metal influences the propagation distance greatly. Actually, SPPs loss can be compensated by optical parametric amplification in ...

Demonstration of a Novel Surface Plasmon Based Interferometer with COMSOL

D. Carrier, and J.J. Dubowski
Université de Sherbrooke, Sherbrooke, QC, Canada

In order to provide swift and precise diagnostics, physicians and medical doctors require an adequate amount of information about the patient\'s condition. An integrated SPR (surface plasmon resonance) biosensing platform is currently developed by our research group with the aim of preserving compatibility with microfabrication techniques, open-ended surface and integrated light source. In order ...

Simulation of Photonic Crystals Particle Filling by Electrospray

A. Coll, V. Di Virgilio, S. Bermejo, and L. Castañer
Universitat Politècnica de Catalunya, Barcelona, Spain

Photonic crystals are widely used in optical applications as waveguides and band filters. Filling the periodic structural material of photonic crystals with other materials is very useful in order to change the optical properties of the devices. In this paper electrostatic COMSOL simulations describing an electrospray deposition of particles in macroporous structures are performed.

Modelling Ultra-short Pulse Laser Ablation of Dielectric Materials Using multiple Rate Equations - new

P. Boerner[1], K. Wegener[1]
[1]Institute of Machine Tools and Manufacturing, ETH Zurich, Zurich, Switzerland

Ultrafast lasers are widely applied in micromachining, material science and physics. In industry, picosecond lasers are becoming more and more established. For pulse lengths shorter than the electron-phonon coupling time, heat affected zones are negligible. Thermally sensitive materials can be processed using ultrashort pulse laser radiation. Multi-component materials and poorly absorbing ...

AlGaInAs/InP Hexagonal Resonator Microlasers with a Center Hole

H. Weng [1], Y. Yang [1], B. Liu [1], X. Ma [1]
[1] Institute of Semiconductors, Chinese Academy of Science, Beijing, China

In the past decades, equilateral polygonal microcavity lasers with whispering-gallery modes (WGMs) have attracted great attentions due to their potential application in photonic-integrated circuits. Compared to the perfect microdisk without deformation, the polygonal microcavities such as triangle, square, hexagonal and octagonal can easily realize the light directional emission and single mode ...