In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Acoustic-Structure Interaction Simulation of a Differential Phase Sensor - new

J. H. Lee[1]
[1]Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE

The idea of application as a hearing device based on a parasitoid fly, Ormia ochracea has been studied extensively recently. This paper addresses another possible application as an underwater directional sensor. In order to study the feasibility of the application, it is necessary to investigate the feasibility of the underwater application of the directional sensor based on the hearing ...

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

J-M. Bauchire[1], E. Langlois-Bertrand[1], and C. de Izarra[1]
[1]GREMI, CNRS, Université d’Orléans, Orléans, France

In this paper, we present the numerical modelling of a free-burning arc and its application to the understanding of optical mirage effect which could occur in a TIG (Tungsten Inert Gas) device used in welding applications.

Numerical Analysis and Experimental Verification of a Fire Resistant Overpack for Nuclear Waste

P. Geraldini [1], A. Lorenzo [1],
[1] Sogin S. p. A., Rome, Italy

Confinement systems for nuclear waste are usually designed to perform and ensure safety in view of all the assumed design basis events, including fires. Considering waste typology and radioactivity, the goal of the confinement system design is to protect the content of the steel drums against a two hours fire event. At this aim Sogin has chosen to use Fiber Reinforced Concrete (FRC) shells. ...

Fluid-Structure Interaction Modeling for an Optimized Design of a Piezoelectric Energy Harvesting MEMS Generator

I. Kuehne[1], A. van der Linden[2], J. Seidel[1], M. Schreiter[1], L. Fromme[2], and A. Frey[1]
[1]Siemens AG, Corporate Research & Technologies, Munich, Germany
[2]Comsol Multiphysics GmbH, Göttingen, Germany

This paper reports the design of a piezoelectric energy harvesting micro generator for an energy autonomous tire pressure monitoring wireless sensor node. For our design we use a piezoelectric MEMS generator approach without additional mass. The intrinsic mass of the cantilever is in the microgram region and the resulting acceleration forces are very small. The generator has a triangular ...

COMSOL Multiphysics® Model of a Solar Dryer - new

E. C. Santos[1], J. H. Sales[1], C. Lima[2]
[1]Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
[2]Instituto Federal da Bahia, Irecê, BA, Brazil

This paper compares the efficiency of a vertical solar dryer vis-à-vis the traditional drying method by the means of a computer simulation. The said program considers geometric, thermal and mechanical effects so as to simulate heat transfer via conduction, convection and radiation. We later ran additional tests with simulated data on the greenhouses(traditional method) so as to compare the ...

Process Modeling and Optimization of Design Parameters in a Falling Film Plate and Frame Evaporator

A. Donaldson [1], A. Thimmaiah [2],
[1] Dalhousie University, Halifax, Nova Scotia, Canada
[2] National Institute of Technology Karnataka, Mangalore, Karnataka, India.

COMSOL Multiphysics® software is used to explore the impact of distributor width on the film thickness, and the resulting sensitivity of overall thermal efficiency in a plate and frame triple-effect evaporator. A stable film is crucial to maintain a minimum wetting rate, to circumvent the “dry-out condition”. The hydrodynamics of stable film development as a function of distributor width was ...

COMSOL Multiphysics® Simulation Integrated into Genetic Optimization

V. Longinotti[1], S. Di Marco[1], S. Pistilli[1], F. Costa[1], M. Giusti[1], G. Gammariello[1], I. Gison[1], G. Latessa[1,2], D. Mascolo[2], A. Buosciolo[1]
[1]Altran Italia, Roma, Italy
[2]Consorzio DeltaTi Research, Milano, Italy

The main topic of this paper is the development of an innovative tool that can be applied in a wide range of complex problems, to simulate, optimize and improve system design especially when dealing with huge numbers of parameters and constraints. The new methodology is obtained by joining the power of COMSOL Muliphysics® simulation with the modern optimization approach of genetic algorithms. ...

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods - new

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these techniques can provide quality data points, they are often limited by sparse data sampling and scale. Therefore ...

A FEM Study of Displacement Sensor Based on Magnetostrictive/Piezoelectric Composite Material

Qingwei Liu [1], Hangjie Mo [1]
[1] Shanghai Jiao Tong University, Shanghai, China

This paper studies the application of laminate magnetoelectric (ME) material in displacement sensor. We studied the L-L block composite thanks to designed structure by coupling displacement signal with the displacement potential of ME composite. A nonlinear approximation is adapted to modeling magnetostrictive phase and implemented in COMSOL Multiphysics® software. The simulation results ...

Numerical Simulation of a Joule Heating Problem

S.M.F. Garcia[1], and P. Seshaiyer[2]
[1]U.S. Naval Academy, Annapolis, MD, USA
[2]George Mason University, Fairfax, VA, USA

In this work we consider a 1-D mathematical model that describes a heating problem combined with electrical current flows in a body which may undergo a phase change as a result of the heat generated by the current, so-called Joule heating. The model consists of a system of nonlinear partial differential equations with quadratic growth in the gradient. Joule heating is generated by the resistance ...