In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Multiphysics Modelling of a Microwave Furnace for Efficient Solar Silicon Production

N. Rezaii [1], J. P. Mai [1],
[1] JPM Silicon GmbH, Braunschweig, Germany

The JPM Silicon GmbH presents a novel method for the production of solar grade silicon in the microwave oven. This method can specially reduce the energy costs and increase the efficiency of the process. A numerical model is developed which depicts the physical, chemical and electromagnetic phenomena of silicon production process. In order to increase the efficiency of the system, it is ...

Simulating Forced Convection in a Bingham Plastic Fluid

E. Tejaswini [1], B. Sreenivasulu [1], B. Srinivas [1],
[1]Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India

In this work, the heat transfer characteristics of two heated cylinders of square cross-section immersed in a streaming Bingham plastic medium have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide range of conditions as: plastic Reynolds number, 0.1 ≤ Re ≤ 40, Prandtl number, 1 ≤ Pr ≤ 100, Bingham number, 0 ≤ Bn ≤ ...

Iterative Learning Control for Spatio-Temporal Repetitive Processes

D. Kowalów [1], M. Patan [1]
[1] Institute of Control & Computation Engineering, Zielona Góra, Poland

Recently, due to the dynamically increasing complexity of modern systems, a strong necessity appears for more systematic approaches to high quality control and process monitoring. Requirements imposed by process control in the area of spatio-temporal physical systems also called distributed parameter systems (DPSs) are associated with using very accurate models in which spatial dynamics cannot ...

Modeling Bio-Sensing Functionalized Graphene Building Blocks under Environmental Stimuli

E. Lacatus [1],
[1] Polytechnic University of Bucharest, Bucharest, Romania

Successive studies on graphene, reactive-edge graphene, and pore functionalized graphene were conducted throughout the use of the extended capabilities of COMSOL Multiphysics® modules, modeling and simulating the activation of functionalized building-blocks made of graphene and C- allotrope nanostructures or biostructures (protein). The interdisciplinary approach requested on these studies ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Electron Beam Crystallization of Amorphous Silicon Thin Films

S. Saager [1],
[1] Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany

A promising method for low cost production of efficient silicon thin film solar cells is the electron beam physical vapor deposition (EB-PVD) of high purity amorphous silicon (a-Si) layers with high deposition rates up to 300 nm/s [1] followed by crystallization. This study focuses on EB crystallization of deposited a-Si films in the solid phase regime and justifies observed experimental results ...

Thermal Design of Lithium Sulfur Batteries

R. Purkayastha [1], S. Schleuter [1], G. Minton [1], S. Walus [1], M. Wild [1],
[1] Oxis Energy Ltd, E1 Culham Science Centre, Abingdon, United Kingdom

OXIS Energy Ltd is a pioneer in the research and development of Lithium Sulfur batteries. Scaling up from R&D level coin cells to pouch cells for automotive use, engineering design and thermal management start to become critical. In this study, heat flow at various levels of the cell is investigated. We analyzed different heat flow scenarios of the cell, and found that standard pack arrangements ...

Optimization of the Slot Dimensions of a Large Air-gap Linear Synchronous Motor - new

F. Giacometti[1], C. R. Lines[1], R. J. Cruise[1]
[1]Texchange Limited, London, UK

A COMSOL Multiphysics® model is used to optimise the slot geometry of a large air-gap linear synchronous motor. Fixed dimensions are used for the pole pitch, stator depth, stator width and air-gap, since the amount of available space is usually limited. A parametric sweep of the slot-width-to-tooth-width ratio is used to find the optimum geometry where the maximum thrust force is produced ...

PDT Study Using a Model Incorporating Initial Oxygen Concentration and Blood Flow Increase

R. Penjweini[1], T. C. Zhu[1],
[1] Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Type II photodynamic therapy (PDT) is an experimental modality for cancer treatment based on the combined action of a photosensitizing drug (photosensitizer), a special wavelength of light and singlet oxygen (1O2) generation; the cell killing is caused by the reaction of cellular acceptors with 1O2. A mathematical model has been previously developed to incorporate the macroscopic ...

Simplified CFD Modeling of Air Pollution Reduction by Means of Greenery in Urban Canyons

S. Lazzari [1], K. Perini [1], E. R. di Schio [2], E. Roccotiello [3],
[1] University of Genova, Dept. of Sciences for Architecture, Genova, Italy
[2] University of Bologna, Dept. of Industrial Engineering, Bologna, Italy
[3] University of Genova, Dept. of Sciences of Earth, Environment and Life, Genova, Italy

As known, air quality in urban areas is dramatically affected in particular by the noteworthy presence of respirable suspended particulate matter (such as PM2.5), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are mainly due to traffic-induced emissions. On the other hand, it is also known that vegetation can help restoring the environmental quality of dense urban areas ...