In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Utilization of COMSOL Multiphysics' JAVA API for the Implementation of a Micromagnetic Modeling and Simulation Package with a Customized User Interface

L. Teich[1], A. Hütten[2], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany
[2]Department of Physics, Thin Films and Nanostructures, Bielefeld University, Bielefeld, Germany

One of the big advantages of COMSOL Multiphysics is the possibility to implement user-defined partial differential equations (PDE) which can be coupled to COMSOL\'s predefined physics interfaces. However, using the tool’s standard user interface requires manual implementation of the PDEs and a multitude of problem-specific parameters. This process is not just error-prone but also very time ...

Simulation of a Voltage Controlled Resistor Mimicking the Geometry of a MOSFET Device with Graphite Channel - new

M. Bhattacharjee[1], N. Mandal[1], H. B. Nemade[1], D. Bandyopadhyay[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

A Voltage Controlled Resistor (VCR) is simulated by replacing the semiconductor channel of a MOSFET device by graphite and embedding Si nanoparticles near the insulator-channel interface. The change in output drain current is found to depend on the thickness and relative permittivity of the insulator film together with the loading of Si nanoparticles. A material with higher dielectric ...

Design and Simulation of Valveless Piezoelectric Micropump

L. Nayana[1], P. Manohar[1], S. Babu[1]
[1]Department of Electrical Engineering, Visvesvaraya Technological University, Bangalore, Karnataka, India

In this paper some discrete parts of a valveless piezoelectric micropump for drug delivery system is designed and simulated. The core components of the micropump are actuator unit that converts the reciprocating movement of a diaphragm actuated by a piezoelectric actuator into a pumping effect and Nozzle/diffuser elements that are used to direct the flow from inlet to outlet. Simulations are ...

Simulation of a Dual Axis MEMS Seismometer For Building Monitoring System

M. A. Shah [1], F. Iqbal [1], B. L. Lee [1],
[1] Korea University of Technology and Education, Cheonan, Chungcheong, South Korea

A dual axis MEMS seismometer targeted for building monitoring system has been simulated for a full scale of ±5g acceleration. The design uses the capacitive effect for vibration sensing. This comb drive capacitive MEMS seismometer consists of 8 springs with two proof masses. The device is very low cross axis sensitive (almost negligible cross axis error). The cross axis sensitivity of x-axis is ...

COMSOL Multiphysics® Software Simulation of a Dual-axis MEMS Accelerometer with T-Shaped Beams

C. Zheng [1], X. Xiong [1], J. Hu [2]
[1] Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[2] Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

Introduction: Inertial navigation requires acceleration measurement along all three degree-of-freedoms. Most accelerometers are designed to measure acceleration along a single sensitive direction. For complete inertial sensing, a move effective accelerometer which can sense acceleration along multiple axes is needed. In this research, a dual-axis MEMS (Microelectromechanical Systems) ...

Piezoelectric Vibration Energy Harvester Based on Thickness-Tapered Cantilever

S. Kundu [1], H. B. Nemade [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents simulations of uniform thickness and thickness-tapered types of piezoelectric vibration energy harvesters using COMSOL Multiphysics software. The simulated vibration energy harvesters have bimorph cantilever structure with end mass. Tapering the thickness of the piezoelectric layer in bimorph towards the free end is found to improve the stress distribution in the beam and ...

Design and Analysis of 3D Capacitive Accelerometer for Automotive Applications

G. Vijila, S. Vijayakumar, M. Alagappan, and A. Gupta
PSG College of Technology
Tamil Nadu, India

This paper projects a novel 3D capacitive accelerometer design to identify a severe accident and initiate airbag deployment systems. It will detect the rapid negative acceleration of the vehicle to avoid the severity of the collision. Such a device demands excellent performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over time and environmental ...

Design and Simulation of Underwater Acoustic MEMS sensor

S. Prabhu [1], Nagbhushan [1],
[1] Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

Silicon based MEMS have wide applications in under water sensors. This work aims one such applications, hydrophone. Hydrophone detects the pressure variations of acoustic signals and noise in the water and produces an output voltage proportional to the pressure. Here the attempt is made to design and simulate MEMS based underwater acoustic sensor whose working is based on piezoresistive physics. ...

Simulation of MEMS based Flexible Flow Sensor for Biomedical Application

D. Maji[1], C. P. Ravikumar[2], and S. Das[1]
[1]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
[2]Texas Instruments (India) Pvt. Ltd., Bangalore, India

Arterial disease, especially Coronary Artery Disease (CAD) is one of the leading causes of premature morbidity and mortality. During the flow, blood interacts with vessel wall mechanically and chemically which modulates the plaque formation in blood vessel leading to coronary artery diseases. Here we propose to simulate a MEMS based flexible flow sensor based on anemometer principle designed to ...

Simulation of a Buckled Cantilever Plate with Thermal Bimorph Actuators

A. Arevalo [1], D. Conchouso [1], D. Castro [1], M. Diaz [2], I. G. Foulds [3],
[1] CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2] Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[3] University of British Columbia, Vancouver, BC, Canada

INTRODUCTION: Micro Electro Mechanical Systems (MEMS) are fabricated with an in-plane fabrication technology. Out-of-plane structures can be designed to be assembled to provide thermal and electrical isolation from the substrate [1 -3]. These isolations can potentially improve the performance of a range of MEMS devices by decreasing any unwanted coupling effects or parasitic losses from the ...