In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

Modeling and Simulation of the Rapid and Automated Measurement of Biofuel Blending in a Microfluidic Device under Pressure Driven Flow using COMSOL Multiphysics®

Sanket Goel[1], Venkateswaran PS[1], Rahul Prajesh[2], Ajay Agarwal[2]
[1]University of Petroleum & Energy Studies, Bidholi, Prem Nagar, Dehradun, India
[2]CSIR - Central Electronics Engineering Research Institute,(CSIR-CEERI) Pilani, India

• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro-fluidic Device. • Design and Fabrication of a polymer Y-shaped Micro-fluidic Device to work as Micro-Viscometer for ...

Sample Preconcentration in Channels with Nonuniform Surface Charge and Thick Electric Double Layers

A. Eden [1], C. McCallum [1], B. Storey [2], C. D. Meinhart [1], S. Pennathur [1],
[1] University of California Santa Barbara, Santa Barbara, CA, USA
[2] Olin College, Needham, MA, USA

We present a novel method for concentrating and focusing small analytes by taking advantage of the nonuniform ion distributions produced by thick electric double layers (EDLs) in nanochannels with heterogeneous surface charge. Specifically, we apply a voltage bias to a gate electrode embedded within the channel wall, tuning the surface charge in a region of the channel and subsequently altering ...

Modal Analysis of Microcantilever Response to Sine Wave Excitation Using Vibrational Speaker

M. Satthiyaraju [1], T. Ramesh [1],
[1] National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

The dynamic response of microcantilever, which is a simple microelectromechanical system (MEMS) structure, to sine wave excitation is studied using the vibrational speaker set up in the atmospheric damping. Microcantilever is fabricated using micro wire cut EDM process for high precision. Mostly silicon material is used for microsystems based structure. Here stainless steel was used and machined ...

A Modular Platform for Cell Characterization, Handling, and Sorting by Dielectrophoresis

S. Burgarella[1], B. Dell’Anna[2], V. Perna[1], G. Zarola[2], and S. Merlo[2]

[1]STMicroelectronics, Agrate Brianza, MI, Italy
[2]Dipartimento di Elettronica, Università degli Studi di Pavia, Pavia, Italy

Dielectrophoresis (DEP) is a method for cell manipulation without physical contact in lab-on-chip devices, since it exploits the dielectric properties of cells suspended in a microfluidic sample, under the action of locally generated high-gradient electric fields. The DEP platform that has been developed offers an integrated solution for customizable applications. Several functional units, ...

Design and Analysis of Stacked Micromirrors

S. Park, S. Chung, and J. Yeow

University of Waterloo, Systems Design Engineering, Waterloo, Ontario, Canada

A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, and biomedical image systems. In this paper, two stacked micromirrors are presented and analyzed to show ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Design and Analysis of Fluid Structure Interaction for Elbow Shaped Micro Piping System - new

V. S. P. Rajesh[1]
[1]St. Mary's Group of Institutions, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India

Fluid and structure Interaction analysis can be applied to versatile fields of engineering applications, helps in understanding the affects of one material on other, thereby reducing the effect of physical parameters like nonlinear response, vibration in flow channel etc. Rapid development of technology led to the application of this Fluid-Structure Interaction (FSI) in Microfluidics based ...

Analysis of Geometrical Aspects of a Kelvin Probe

I. Kuehne [1], S. Ciba [1], A. Frey [2],
[1] Heilbronn University, Kuenzelsau, Germany
[2] University of Applied Sciences, Augsburg, Germany

The presented analysis investigates the capacitance characteristic of a Kelvin probe regarding the geometrical transition from a movable electrode plate to a narrow tip. Moreover, predictions can be done concerning optimum geometry, sensitivity and suitable electrical measurement circuitry. A further aim of this study is to provide optimal tip geometries for different sized Kelvin probes. This ...