In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Design and Simulation of MEMS-based Piezoelectric Accelerometer

Siram Sai Krishna[1], Nuti Venkata Subrahmanya Ayyappa Sai[1], Dr.K.Srinivasa Rao[2]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India
[2]Professor & HOD, Dept. of Electronics and Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

The Micro electro mechanical systems (MEMS) technology provides us a platform to interface between mechanical and electrical components. In this paper, we have designed MEMS accelerometer based on piezoelectric property, and simulated using COMSOL Multiphysics®. The design, which has PZT kept in the annular diaphragm, provides good sensitivity. When this accelerometer is subjected to stress ...

Optimization and Simulation of MEMS Based Thermal Sensor for Performance of Transformer Oil

V. Vijayalakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

In this work, a bimetallic strip based thermal sensor was designed using MEMS module of COMSOL Multiphysics® software to monitor the temperature rise in insulating oil which was used as coolant in transformers. The bimetallic strip was designed with different shapes such as cylindrical, rectangle, square & conical and different compositions such as Al/Steel Alloy and Fe/Cu which can withstand ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.

Empirical Model Dedicated to the Sensitivity Study of Acoustic Hydrogen Gas Sensors Using COMSOL Multiphysics®

A. Ndieguene[1], I. Kerroum[1], F. Domingue[1], A. Reinhardt[2]
[1]Laboratoire des Microsystèmes et de Télécommunications/Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
[2]Laboratoire d’Électronique et des Technologies de l’Information, CEA, LETI Grenoble, France

Due to the increasing demand for hydrogen gas sensors for applications such as automation, transportation, or environmental monitoring, the need for sensitive and reliable sensors with a short response time is increasing. This paper presents an empirical model that studies the sensitivity of acoustic hydrogen gas sensors. A parametric study based on the variation of physical properties of ...

Simulations of Micropumps Based on Tilted Flexible Structures - new

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC., Needham, MA, USA
[2]Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

Simple Finite Element Model of the Topografiner - new

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the ...

Thermomechanical Effects of the Packaging Molding Process on the Chip in Integrated Circuits - new

N. Semmar[1], M. Fournier[1], P. S. Alleaume [2], A. Seigneurin [3], , ,
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France
[2]Collegium Sciences et Techniques, Orléans, France
[3]ST Microelectronics Tours SAS, Tours, France

Usually, in integrated circuits, the chip is brazed on leadframe and then, a polymer resin is molded around to create the packaging. On the first hand, the molding process at high temperatures will induce thermomechanical stress on the chip. As the leadframe, the chip and the braze have all different thermoelastic properties, these stress can be critical for the chip connections. To ...

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

Modeling of Silicon Piezoresistive Pressure Sensor: Application to Prevent Some Diabetes Complications

F. Kerrour[1], A. Beddiaf[1], M. Benabbas-Marir[1]
[1]MODerNa Laboratory, University Mentouri, Constantine, Algeria

Several analytical solutions describing the mechanical behavior of a silicon micro membrane deflection, perfectly embedded and subjected to a uniform and constant pressure have been proposed. The obtained results are compared with those obtained by using COMSOL software for a rectangular diaphragm deflection. COMSOL Multiphysics is powerful software for solving problems based on partial ...

RFID-Enabled Temperature Sensor

I.M. Abdel-Motaleb[1], K. Allen [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

The design of a RFID-enabled temperature sensor is described in this paper. In this sensor, a change in temperature causes structural beams to bend, which results in a proportional displacement of the plates of the capacitor. Plates\' displacement results, in turn, in changing the value of its capacitance. The capacitor of the sensor is coupled to the LC resonant network of a passive RFID tag. ...