In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Computation of the Longitudinal Dispersion Coefficient in an Adsorbing Porous Medium Using Homogenization

A. Rijnks[1], M. Darwish[2], and H. Bruining[3]
[1]StatoilHydro ASA, Bergen, Norway
[2]Shell Exploration & Production International Centre, Rijswijk,
The Netherlands
[3]Section of Geoengineering, Faculty of Civil Engineering and Geosciences, TU Delft, Delft, The Netherlands

The method to derive upscaled expressions for the dispersion coefficients for reactive flow in a porous medium uses a periodic unit cell (PUC), which consists for instance of a spherical grain in a cube, but nothing prohibits defining more complex PUC's. Homogenization leads to a coupled system of equations where the flow is described by Stokes equation and the concentration fluctuation is ...

Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in Relevance to CO₂ Geological Storage

S. Kim[1], S. A. Hosseini[1], S. D. Hovorka[1]
[1]Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA

CO₂ geological storage can help to provide a “bridge” from a fossil-fuel dependent system to a more diversified energy portfolio. Pressure monitoring for an injection zone (IZ) and an above-zone monitoring interval (AZMI) has been under operation at a field-scale CO₂ injection site, Cranfield, MS. Recorded pressure data in the AZMI revealed a certain amount of increase with no evidence of direct ...

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

H. Ishimori[1], K. Endo[2], H. Sakanakura[2], M. Yamada[2], M. Osako[2]
[1]Ritsumeikan University, Kusatsu, Shiga, Japan
[2]National Institute for Environmental Studies, Tsukuba, Ibaraki Prefecture, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Effect of Parallel Strip Water Source Spacing on Lateral Infiltration Flux

M. García-Serrana [1], J. L. Nieber [1], J. S. Gulliver [1],
[1] University of Minnesota, Minneapolis, MN, USA

This analysis evaluates the importance of the lateral component of flow on the infiltration of water from parallel strip sources of water on the soil surface. Flow from such sources will be two-dimensional, having both vertical and lateral components. Here we examine the effect of the spacing between parallel strip sources and the texture of the soil on the rate of infiltration through a given ...

Numerical Simulation of the Thermal Response Test Within Comsol Multiphysics® Environment

C. Corradi, L. Schiavi, S. Rainieri, and G. Pagliarini
Department of Industrial Engineering, University of Parma, Italy

An estimation method, known as Thermal Response Test, of the soil thermal properties necessary to the design of a borehole geothermal energy storage system is discussed in relation to its application to the ground having non–homogeneous composition. The governing equations of the conduction/convection heat transfer unsteady problem which describe the system behaviour have been solved ...

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann[1], M. L. Sentis[1], B. J. Graupner[1], A.-K. Leuz[1], C. Belardinelli[2]
[1]Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland
[2]Kantonsschule Solothurn, Solothurn, Switzerland

Introduction: The sectoral plan that defines the procedure and criteria of site selection for deep geological repositories for all categories of waste (high-level and low- and intermediate-level waste) in Switzerland started in 2008 and will last for about ten years. ENSI (Swiss Nuclear Safety Inspectorate) is in charge of reviewing the proposals and safety assessments for geological ...

Geomagnetic Modeling with COMSOL Multiphysics® Software - new

G. Ha[1], S. S. Kim[1], J. H. Kim[1]
[1]Chungnam National University, Daejeon, Korea

Here we aim to advance geomagnetic modeling approaches using COMSOL Multiphysics® software and improve the degree of detail that can be obtained from the measured magnetic field. First, we carried out benchmark tests by comparing the computed results using the widely used analytic solutions for rectangular bodies with arbitrary direction of magnetization with those from the AC/DC Module of ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Using COMSOL for the Transport Modelling of Some Special Cases in a Bentonite Buffer in a Final Repository for Spent Nuclear Fuel

M. Olin[1], V-M. Pulkkanen[1], A. Seppälä[1], T. Saario[1], A. Itälä[1], M. Tanhua-Tyrkkö[1], and M. Liukkonen[1]

[1]VTT, Technical Research Centre of Finland, Espoo, Finland

The bentonite barrier is an essential part of a safe spent fuel repository in granitic bedrock. In this work COMSOL Multiphysics® is used in modelling the Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) phenomena and processes taking place in a bentonite buffer. Special interest lies in systems in which the density of bentonite or bentonite pore water varies. Typically, variation ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...