Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.


Visualizza gli articoli presentati alla COMSOL Conference 2020

Computational Fluid Dynamicsx

Integration of the DeProF Model for Two-Phase Flow in P.M. into the Subsurface Flow Module

M. S. Valavanides [1], E. D. Skouras [2], A. N. Kalarakis [3], V. N. Burganos [2],
[1] TEI Athens, Athens, Greece
[2] FORTH/ICE-HT, Patras, Greece
[3] TEI of Western Greece, Patras, Greece

Relative permeability maps for steady-state two-phase flow in porous media, delivered by implementing the DeProF model [1] algorithm, were integrated within COMSOL Multiphysics® software [2] to resolve field-scale flows in porous media. The mechanistic model DeProF [1], predicts the ... Per saperne di più

Calculating the Dissipation in Fluid Dampers with Non-Newtonian Fluid Models

A. Forberger [1],
[1] Gamax Laboratory Solutions Ltd., Budapest, Hungary

Introduction Present paper gives a comparison of the Upperconvected Maxwell (UCM) and the Oldroyd-B model for the calculation of dissipation in high shear-rate cases of viscodampers. When polymeric liquid is considered that part of energy that is irreversible can not be calculated in the ... Per saperne di più

Modeling a DC Plasma Torch with COMSOL Multiphysics® Software

Bruno Chine' [1], Manuel Francisco Mata [2], Ivan Vargas [3],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] School of Electromechanics Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3] School of Physics, Costa Rica Institute of Technology, Cartago, Costa Rica

Plasma torches are used in processing of materials and in energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be glowed by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the plasma (Fig. 1) is ... Per saperne di più

A Model of Heat Transfer in Metal Foaming

Bruno Chinè [1], Valerio Mussi [2], Michele Monno [3], Andrea Rossi [2],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[3] Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy

Metal foams are interesting materials with many potential applications. Foamed metals or alloys include gas voids in the material structure and therefore the density is introduced as a new variable, with the real possibility to modify ad hoc their physical properties. In the indirect ... Per saperne di più

Effect of Permeability Diminution in Nutrient Diffusion in Intervertebral Disc

M. A. Chetoui [1], O. Boiron [2], A. Dogui [3], V. Deplano [2],
[1] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir; Ecole centrale Marseille, Marseille, France
[2] Aix-Marseille Université, CNRS, Ecole Centrale, Marseille, France
[3] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir, Marseille, France

Intervertebral discs (IVD) are fibro-cartilages situated between vertebrae providing their joint flexibility. They play a major role in the transmission and absorption of load through the spine. The disc can undergo progressive structural and quantitative changes in its composition and ... Per saperne di più

Pneumo-Hydrodynamic Droplet Generation

V. Mamet [1], P. Namy [2], N. Berri [1], L. Tatoulian [1], P. Ehouarn [1], V. Briday [1], P. Clemenceau [2], B. Dupont [1]
[1] DBV Technologies, Bagneux, France
[2] SIMTEC, Grenoble, France

Introduction Droplet-based microfluidics is a large source of research for scientists of new biotechnologies, aerosols or other 2D-Microfluidics devices. Here, we will focus on an industrial application of a 3D microfluidic device : the PH2DG, Pneumo-HydroDynamic Droplet Generator. The ... Per saperne di più

Study of Electrochemically Generated Two-Phase Flows

J. Schillings [1], O. Doche [2], J. Deseure [1],
[1] LEPMI, Grenoble, France
[2] SIMAP, Grenoble, France

The dependency of electrochemical processes performances on mass transfer is well-known. Electrolyte flow in the vicinity of electrodes surface can enhance reactions due to increased mass transfer. This flow can be generated by the production of a gaseous phase, leading to a natural ... Per saperne di più

Iterative Learning Control for Spatio-Temporal Repetitive Processes

D. Kowalów [1], M. Patan [1]
[1] Institute of Control & Computation Engineering, Zielona Góra, Poland

Recently, due to the dynamically increasing complexity of modern systems, a strong necessity appears for more systematic approaches to high quality control and process monitoring. Requirements imposed by process control in the area of spatio-temporal physical systems also called ... Per saperne di più

Modeling Microwave Heating During Batch Processing of a Liquid Sample in a Single Mode Cavity

S. Curet [1], F. Bellicanta Begnini [1], O. Rouaud [1], L. Boillereaux [1]
[1] L’UNAM Université, ONIRIS, CNRS, GEPEA, Nantes, France

The use of microwaves for heating purposes of dielectric materials is encountered in many industrial applications (food processing, chemistry, material engineering and medical applications). In most of these thermal applications, the prediction of the temperature evolution within the ... Per saperne di più

Hydrodynamics and Mass Transfer in Taylor Flow

F. L. Durán Martínez [1], A. M. Billet [1], C. Julcour-Lebigue [1], F. Larachi [2],
[1] Toulouse University, Toulouse, France
[2] Laval University, Quebec, Canada

In the present work, numerical simulations of a Monolith Reactor (MR) are carried out in order to develop a pre-design tool for industrial-scale reactors applied to highly exothermal reactions. The reacting circular channels (2-4 mm internal diameter) are coated with a few micron thick ... Per saperne di più