In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Mean Flow Augmented Acoustics in Rocket Systems - new

S. Fischbach[1]
[1]NASA Marshall Space Flight Center / Jacobs ESSSA Group, Huntsville, AL, USA

Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode-shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and ...

Numerical Analysis of Mass Transfer Rate in Droplet Flow at Microscopic Scales - new

S. Cito[1], T. Sikanen[1]
[1]Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland

Droplet flow at microscopic scale is often used to enhance many pharmaceuticals and industrial processes (i.e. liquid–liquid micro-extraction, nanoparticle synthesis, slow reactions in microfluidic devices, etc.). In all these processes, the mass transfer rate, at the interface between the droplets and the surrounding fluid of diluted reactants plays a key role. This work at analyzing ...

Magneto-Hydrodynamic Numerical Study of DC Electromagnetic Pump for Liquid Metal

A. Daoud, and N. Kandev
Institut de recherche d'Hydro-Quebec (LTE), Shawinigan, Quebec, Canada

The electromagnetic pumping (EMP) of electrically-conducting fluid is of growing interest for many industrial applications requiring precise flow control, enabling stopping or reversing flow direction without any moving parts or mechanical devices. Presented in this work are the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of direct current (DC) EMP for liquid ...

Design of Cooling System for Electronic Devices Using Impinging Jets

P. Lin[1], C. Chang[2], H. Huang[3], and B. Zheng[4]
[1]Mechanical and Aerospace Eng., Rutgers, The State University of New Jersey, Piscataway, NJ
[2]FTR Systems (Shanghai) Inc., Shanghai, China
[3]PolarOnyx, Inc., San Jose, CA
[4]School of Mechatronics Eng., University of Electronic Science and Technology of China, Chengdu, China

The heat sink designs using impinging liquid jets, which form stagnation flows, feature uniform heat transfer coefficients, and provide thin thermal boundary layers, are studied to reduce the heat from GPUs. Three different designs using central, micro, and uniform-cross-section (UCS) central jets are studied and simulated in COMSOL. The efficiency factors, defined as the ratio of total ...

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development

F. Noto[1,2], V. Bellini[1,2], E. Cisbani[3,4], V. De Smet[1,5], F. Librizzi[6], F. Mammoliti[1,2], and C. Sutera[6]
[1]Dipart. di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]INFN – Sezione di Catania, Catania, Italy
[3]IINFN – Sezione di Roma - Sanità Group, Roma, Italy
[4]Italian National Institute of Health, Roma, Italy
[5]Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[6]NFN - Sezione di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm2 without noticeable aging and to provide the sub millimeter resolution on working chambers up to 45x45 cm2. A new GEM based tracker is under development for the Hall A upgrade at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber consists of 3 adjacent ...

Development of COMSOL-Based Applications for Heavy Oil Reservoir Modeling

S. Cambon [1], I. Bogdanov [1]
[1]Open & Experimental Center for Heavy Oil (CHLOE), University of Pau, Pau, France

The efficiency and environmental impact of oil production become a principal challenge of energy producing companies. The improvement of existing and development of novel methods are often feasible within either a “new” physical framework (from the viewpoint of oil reservoir applications) or a non-trivial combination of “known” phenomena. Last fifty years the dedicated reservoir simulators have ...

Use of COMSOL In Aerodynamic Optimization of the UNLV Solar-Powered Unmanned Aerial Vehicle

L. Dube, W. McElroy, and D. Pepper

University of Nevada, Las Vegas, Nevada, USA

We discuss the use of COMSOL Multiphysics 3.4 in the aerodynamic optimization process of the UNLV solarpowered UAV. We also address the use of COMSOL’s Multiphysics ability and how it was used within the scope of the project. In particular we highlight the development of wingtip devices, some of which are non-planar lifting surfaces, and we analyze how these changes affect the airframe ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

Thermal and Fluid-dynamical Optimisation of Passengers Comfort in a Touring Bus Cabin

G. Petrone[1], G. Fichera[2], and M. Scionti[1]
[1]Bus-Engineering S.r.l., Catania, Italy
[2]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Innovations in air-conditioning and other forms of cooling or ventilation can be viewed as technological solutions improving environmental conditions that are beneficial for human health, comfort and productivity. This study deals with a thermal and fluid-dynamics investigation of passenger comfort in a touring bus cabin. COMSOL Multiphysics® is used as a powerful design and optimization ...

Simulation of Planar Wave Flagellar Propulsion of Nanorobots using COMSOL

N. Londhe, R. Majumdar, J. Rathore, and N. Sharma
Dept. of Mechanical Engineering
Birla Institute of Technology and Science
Pilani, Rajasthan

Nanorobots may be used in the advancement of medical technology, healthcare, and environment monitoring by swimming in biological fluids flowing in narrow channels of a few hundred nanometers in the area of bio-medical engineering. The pronounced effects in nanometer scale such as increased apparent viscosity and low Reynolds number make the designing of propulsion mechanism a challenging ...