In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Chemical Reactions at Interfaces During Droplet Formation in Microchannels

Simeon Cavadias [1], Cédric Guyon [2], Gerrardo Vera De la Cruz [3],
[1] Institut Pierre-Gilles de Gennes (IPGG) - UPMC, France
[2] Chimie-ParisTech - Institut Pierre-Gilles de Gennes (IPGG) , France
[3] Master Nuclear Energy, ISTN (Saclay), France

Emulsions, small liquid droplets of oil in water or water in oil, find wide application in, pharmaceutical products, fine chemicals, analytical chemistry. Microfluidic devices allow creation of uniform droplets with a tight distribution. The COMSOL Multiphysics® software model presented here is an extension of the tutorial “Droplet Breakup in a T- junction”. In this tutorial uniform droplets ...

A Dynamic Simulation of Heterogeneous Catalysis with COMSOL Multiphysics® software

A. K. Patan [1], M. Mekala [1], S. K. Thamida [1],
[1] National Institute of Technology, Warangal, Telengana, India.

Reaction-Diffusion equation is simulated for heterogeneous catalytic reaction involving a porous catalyst particle surrounded by liquid reactants. COMSOL Multiphysics® software along with transport of dilute species module is used for this purpose. Global Variables such as reaction conversion are obtained through post-processing in COMSOL® software itself by evaluation of derived variables.

Analyte Capture from Liquid Samples: Size Matters

M. Weber[1], M. Reed[1]
[1]Yale University, New Haven, CT, USA

Arrays of vertical pillars, Micro Purification Chips, have been widely used for analyte capture from liquid samples [Henderson et. al, 2006], [Toner et. al, 2007], [Stern et. al, 2010]. However exact understanding of the capture efficiency mechanisms has not been previously explained. Here we present a model in COMSOL Multiphysics® which calculates analyte capture efficiency based on initial ...

Virtual Modeling of Thermo-Physiological Comfort in Clothing

P. Van Ransbeeck [1], R. Benoot [1], B. Van Der Smissen [1]
[1] University College Ghent, Faculty of Science and Nature, Department of Mechatronics, Belgium

This publication aims to investigate conjugate heat and mass transfer around a clothed virtual manikin. This research can be performed at different scales: (1) at material scale where a piece of textile is investigated in 1D or 2D space or (2) at system level where a clothed cylindrical body (2D) or a complete manikin (3D) is modeled. The work is based on previous methods and results from ...

Numerical Model for Leaching and Transporting Behavior of Radiocesium in MSW Landfill

H. Ishimori[1], K. Endo[2], H. Sakanakura[2], M. Yamada[2], M. Osako[2]
[1]Ritsumeikan University, Kusatsu, Shiga, Japan
[2]National Institute for Environmental Studies, Tsukuba, Ibaraki Prefecture, Japan

This paper presents the numerical simulation model for radiocesium leaching and transporting behavior in municipal solid waste (MSW) landfill and discusses on the design for the required geometry and properties of the impermeable final cover and the soil sorption layer, which work for containment of hazardous waste such as radiocesium-contaminated MSW generated by Fukushima Daiichi nuclear ...

Coupled Palaehydrogeological Microbial and Geochemical Reactive Transport Model of the Olkiluoto Site (Finland)

P. Trinchero[1], M. Luna[1], J. Molinero[1], G. Román-Ross[1], F. Maia[1], A. Nardi[1], J. Löfman[2], P. Pitkänen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Finland
[3]Posiva Oy, Olkiluoto, Finland

Olkiluoto at Eurajoki has been selected as the final repository site for spent nuclear waste in Finland. This area has been affected, at regional scale, by land-uplift processes related to the ice withdrawal. These events have resulted in a complex and stratified heterogeneous hydrochemical system. The objective of this work was to develop a robust paleohydrogeological reactive transport (PRT) ...

Simulation of the Plasma Generated in a Gas Bubble

L. Z. Tong[1]
[1]Keisoku Engineering System Co., Ltd., Tokyo, Japan

The plasmas generated in water involve various physical phenomena such as flows agitated by bubbles, high electric fields for breakdown, discharges in bubbles with size variation, and so on. In this paper, studies have been made on the simulation of plasmas generated in bubbles with size variation. The species taken in account include electrons, three kinds of ions, and ten kinds of neutral ...

Transport Phenomena in the Conversion of an Anaerobic Landfill into an Aerobic Landfill

H. Omar [1], S. Rohani [1],
[1] University of Western Ontario, London, ON, Canada

The world’s landfills are beginning to fill up due to the growing human population. Landfills require land and there will come a time when there will be no land to be used for landfills. A solution that is gaining attraction is the conversion of traditional “dry-tomb” landfills (used for storage) into bioreactor landfills. Dry-tomb landfills have many associated problems such as methane ...

Sensitivity Analysis of CPP’s for Solvent Removal Process of a API-Protein Bonded Nano-Suspension

C. C. Huang [1], T. Liu [1], F. Faassen [1],
[1] Teva Pharmachemie B.V., Haarlem, The Netherlands

Solvent extraction and evaporation is a widely used unit operation in the manufacturing of micro and nano-particles. Due to the weak bond of the API to the protein, the product is highly sensitive to temperature, mechanical mixing and extraction/evaporation rate. A slow extraction/evaporation rate leads to changes of the particle size, which may result in blockage of the sterile filter and ...

Model of Combustion Synthesis of Thermoelectric Calcium Cobaltates

J. Selig, and S. Lin
Lamar University, Beaumont, TX, USA

Self-propagating High-temperature Synthesis (SHS), a very economical synthesis of oxides was used in our lab to produce oxide materials. SHS process uses a highly exothermic reaction to convert reactants rapidly to pure products with minimal external energy input. This reaction is initiated by an igniter and reaction front propagates from the ignition through the rest of the sample. The fast ...