In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Human Torso Model for Heat Transfer Analysis

X. Xu[1], T. Patel[1], R.W. Hoyt[1]
[1]U.S. Army Institute of Environmental Medicine, Natick, MA, USA

A human torso model was created for heat transfer analysis. The torso was derived from the ‘Virtual Family’ whole-body voxel data from the ITIS Foundation (Zurich, Switzerland). Measurements were taken from the ITIS male along the axial plane at key anatomical landmarks and used to develop geometry in Solidworks. Individual components were created to represent the skin, fat, muscle, and bone ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Modelling of Thermally Induced Electrical Instabilities in Intestine using COMSOL Multiphysics®

A. Gizzi[1][3], C. Cherubini[1][2], S. Migliori[1][3], and S. Filippi[1][2]
[1]Nonlinear Physics and Mathematical Modeling Lab, Engineering Faculty, University Campus Bio-Medico, Roma, Italy
[2]International Center for Relativistic Astrophysics, University of Rome La Sapienza, Roma, Italy
[3]Alberto Sordi Foundation, Research Institute on Aging, Roma, Italy

Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including thermal variations, is presented here. Using COMSOL Multiphysics the existing intestinal ionic model have been ...

A Multiscale-Multiphysics Model for Axon Pathfinding Simulation, the Example of the Olfactory System

G. Naldi[1], G. Aletti[1], P. Causin[1]
[1]Dipartimento di Matematica ‘F. Enriques’, Università degli Studi di Milano, Milano, Italy

In the developing embryo, neurons form connections by projecting axons to appropriate target areas. The projection process includes neurite elongation, resulting from the assembly of new cytoskeletal material at the free end of the axon, a complex cascade of steering decisions, driven by biomechanical properties of the surrounding environment and by signals in it. In this work we focus on the ...

COMSOL Multiphysics® Model of Canine Elbow for Use in Investigating Medial Coronoid Disease

K. A. Bodnyk[1], G. J. Noble[1], N. Fitzpatrick[2], M. J. Allen[3], K. Stephenoff[1], R. T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
[2]Fitzpatrick Referrals, Godalming, Surrey, United Kingdom
[3]Department of Veterinary Medicine, The Ohio State University, Columbus, OH, USA

The elbow joint in dogs constitutes a complex interaction of three bones, the humerus, radius and ulna. Medial coronoid disease (MCD) is a common cause of lameness in dogs, i.e. fracturing of the most prominent portion of the ulnar joint surface driven in flexion and in pivot against both the humerus and the radius. The cause remains unknown, but prior studies suggest joint incongruency as an ...

Design of Multiple Ground System for Maternal Defibrillation - new

A. Jeremic[1], E. Khoshrowshahli[2]
[1]Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada
[2]Biomedical Engineering, McMaster University, Hamilton, ON, Canada

Although cardiac arrest may be statistically insignificant event financial and more important emotional costs in such cases are quite devastating. In this paper we study the effects of multiple grounding pads. Namely, we believe that by placing multiple pads in the lower abdominal part we would be able to decrease the current density that would be dissipated to fetus and amniotic ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Passive and Active Deformation Processes of 3D Fibre-Reinforced Caricatures of Cardiovascular Tissues

A. Di Carlo[1], P. Nardinocchi[2], T. Svaton[3], and L. Teresi[1]

[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Dept. of Structural & Geotechnical Engineering, Università di Roma La Sapienza, Roma, Italy
[3]Dept. of Mathematics, University of West Bohemia, Pilsen, Czech Republic

In this paper, we present a mathematical model of contractile elastic solids meant to simulate various districts of the cardiovascular system, and based on the concepts of active deformation and embedded muscle fibres. Specifically, here we deal with the modeling of the gross mechanics of the Left Ventricle (LV) which is strictly related to its pump function. As is well known, the effectiveness ...

Comparison of Computational Methods for the Estimation of the Dielectrophoretic Force Acting on Biological Cells and Aggregates in Silicon Lab-on-chip

S. Burgarella[1], F. Maggioni[2], and G. Naldi[2]
[1]STMicroelectronics, Agrate Brianza, Milan, Italy
[2]Department of Mathematics, University of Milan, Milan, Italy

Dielectrophoresis is a method for cell manipulation in miniaturized devices exploiting the dielectric properties of cells and/or cellular aggregates suspended in a fluid and subjected to a high-gradient electric field. The mathematical expression of the force is obtained by a multipole expansion whose terms involve increasing power of the particle\'s radius. Three methods for the expression ...

Magnetic Fields and Materials for Medical Bone Reconstruction Assisted by Advanced Finite-Element Simulations

A. Sytcheva[1] and T. Herrmannsdörfer[1]
[1]Hochfeld-Magnetlabor Dresden, Forschungszentrum Dresden-Rossendorf, Dresden, Germany

We address the use of magnetic fields, forces, and materials for medical purposes. In particular, the treatment of osteochondral lesions is aimed for. To support ongoing activities in this field of research, last advances in using Finite Element Analysis (FEA) for the simulation of relevant processes, like magnetic targeting and magnetic fixation are reported. The availability of advanced ...