In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Dynamic Simulation Of Particle Self-Assembly Applied To Microarray Technology

V. Di Virgilio, A. Coll, S. Bermejo, and L. Castañer
Universitat Politecnica de Catalunya, Barcelona, Spain

In this work we want to explore some techniques, microfluidic and electrospray-ionization based, suitable for dynamic microarrays\' fabrication. The fabrication techniques are based on manipulation and self-assembly of selective coated micro and nanobeads. The simulation will include electro-osmotic flow, species transport, and electrostatics.

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of modulation of peptide function. We push the neuropeptide galanin through organotypic hippocampal slice ...

Design of Microneedle Array for Biomedicine

N. Mane[1], A. Gaikwad[1]
[1]Department of Instrumentation, Cummins College of Engineering, Pune, Maharashtra, India

Micro electro-mechanical system (MEMS) is rapidly growing area of interest for a broad spectrum of applications. One particularly fast-growing area is biomedical applications for micromaching technologies. One application of interest to the biomedical industry is the development of microneedles. MEMS technology brings new means for biomedicine field. Patch-based transdermal drug delivery offers ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. A two-substrate mathematical model of microscale optical glucose sensors in ...

Temperature Excursions at the Pulp-Dentin Junction during the Curing of Light-Activated Dental Restorations

M. Jakubinek[1,2], C. Neill[1], C. Felix[3], R. Price[2,3], M. White[1,2]

[1]Departments of Chemistry and Physics, Dalhousie University, Halifax, NS, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, NS, Canada
[3]Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada

Heat produced during the curing of light-activated dental restorations could damage the dental pulp. Given the prevalence of composite restorations and the importance of avoiding injury to the pulp, efforts should be made to minimize the temperature increase that occurs at the pulp-dentin junction during light-curing. In this investigation we develop and evaluate a COMSOL Multiphysics FEM tooth ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

Growth and Remodelling of Intracranial Saccular Aneurysms

A. Di Carlo[1], V. Sansalone[2], A. Tatone[3], and V. Varano[1]
[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Laboratoire de Mécanique Physique, Université Paris Est, Paris, France
[3]DISAT, Università degli Studi dell’Aquila, L'Aquila, Italy

We present a mechanical model a growing spherical shell suitable for predicting the evolution of a Saccular Cerebral Artery Aneurysms (SCAA). It relies basically on the Kröner-Lee decomposition, used to describe the interplay between the current and the relaxed configuration of body elements. Rupture or stabilization of a SCAA are the end effect of a number of biological mechanisms, still poorly ...

Stochastic Modeling of Biological Systems – Ranking the Model Parameters of the Human Vocal Folds

D. Cook[1]
[1]New York University, New York, USA

Computational models of biological systems are becoming more and more common in medical research areas. Evidence of this can be found by examining the number of articles containing the term “finite element” in the expansive National Institutes of Health (NIH) digital research archive PubMed. Numerical modeling of biological systems allows the execution of “computational ...