In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Virtual Modeling of Thermo-Physiological Comfort in Clothing

P. Van Ransbeeck [1], R. Benoot [1], B. Van Der Smissen [1]
[1] University College Ghent, Faculty of Science and Nature, Department of Mechatronics, Belgium

This publication aims to investigate conjugate heat and mass transfer around a clothed virtual manikin. This research can be performed at different scales: (1) at material scale where a piece of textile is investigated in 1D or 2D space or (2) at system level where a clothed cylindrical body (2D) or a complete manikin (3D) is modeled. The work is based on previous methods and results from ...

Hemodynamic Therapy of Middle Cerebral Artery Vasospasm Guided by a Multiphase Model of Oxygen Transport

S. Conrad[1,2], P. Chittiboina[3], and B. Guthikonda[3]

[1]Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
[2]Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
[3]Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA

Cerebral vasospasm is a complication of subarachnoid hemorrhage and other neurosurgical emergencies that reduce blood flow to the brain. Part of the approach to management of vasospasm is to improve flow through the stenotic areas by reducing by decreasing blood viscosity and enhancing flow through the stenosis. To examine the interaction of these factors, we applied computational fluid ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

Estudo Numérico da Eletroquimioterapia em Tumor Cutâneo com Diferentes Configurações de Eletrodos - new

G. Neves[1], D. Suzuki[1], J. Alvim[1], M. Rangel[2]
[1]Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
[2]Vet Câncer Oncologia Veterinária, São Paulo, SP, Brasil

A eletroquimioterapia é um tratamento de câncer que utiliza a combinação de agentes quimioterápicos e campos elétricos. A base teórica por trás dessa aplicação é a eletroporação. Esse fenômeno biológico consiste na abertura de poros na membrana celular devido à aplicação de pulsos elétricos. Este trabalho analisa o comportamento do campo elétrico gerado por pulsos elétricos aplicados em ...

Magnetic Fields and Materials for Medical Bone Reconstruction Assisted by Advanced Finite-Element Simulations

A. Sytcheva[1] and T. Herrmannsdörfer[1]
[1]Hochfeld-Magnetlabor Dresden, Forschungszentrum Dresden-Rossendorf, Dresden, Germany

We address the use of magnetic fields, forces, and materials for medical purposes. In particular, the treatment of osteochondral lesions is aimed for. To support ongoing activities in this field of research, last advances in using Finite Element Analysis (FEA) for the simulation of relevant processes, like magnetic targeting and magnetic fixation are reported. The availability of advanced ...

A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

Kristian Dreij[1], Qasim Ali Chaudhry[2], Bengt Jernström[1], Ralf Morgenstern[1], and Michael Hanke[2]
[1]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
[2]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation ...

Drug Distribution in the Human Eye

L. Murtomäki[1], T. Kainuvaara[1]
[1]University of Helsinki, Helsinki, Finland

Drug therapy of the posterior segment of an eye is very challenging due to the difficult accessibility. Modern drugs often are large molecules, such as peptides, antibodies or oligonucleotides which are administrated, e.g. by intravitreous injections which requires clinical conditions. Computer modeling can be helpful in designing new and less invasive routes of drug administration. COMSOL is ...

Modeling Plant Morphodynamics in Predefined COMSOL Multiphysics® Interface

S. Nikolaev[1], A. Trubuil[2]
[1]Institute of cytology and genetics SB RAS, Novosibirsk, Russia
[2]Institut National de la Recherche Agronomique, Jouy-en-Josas, France

We used a predefined COMSOL Multiphysics® interface to imitate biological growth and shape change (morphodynamics). We found a set of parameters that supply observed morphodynamics for an Arabidopsis embryo during its transition from globular to heart stage.

Simulating Light Propagation during I-PDT of Locally Advanced Head and Neck Cancer

E. Oakley [1], H. Arshad [1], G. Shafirstein [1],
[1] Roswell Park Cancer Institute, Buffalo, NY, USA

Interstitial photodynamic therapy (I-PDT) can be applied for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). The complex anatomy of LA-HNSCC requires careful planning of the light delivery and fiber insertion. We have developed an image-based approach, using finite element analysis, to suggest the number and location of treatment fibers needed for I-PDT and to ...

Simulation of Transport of Lipophilic Compounds in Complex Cell Geometry

Q.A. Chaudhry[1], M. Hanke[1], and R. Morgenstern[2]
[1]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
[2]Karolinska Institutet, Stockholm, Sweden

The mathematical modeling of the diffusion and reaction of toxic compounds in mammalian cells is tough task due to their very complex geometry. The heterogeneity of the cell, particularly the cytoplasm, and the variation of the cellular architecture, greatly affects the behavior of these toxic compounds. Homogenization techniques have been implemented for the numerical treatment of the model. ...