In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Simulations of Microelectrode and Neuron Interfaces Enable Long-Term and High Fidelity Recordings

P. Wijdenes [1], H. Ali [2], N. Syed [3], C. Dalton [2],
[1] Centre for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada
[2] Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
[3] Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada

Our inability to record single cell activity with high resolution over a long period of time precludes fundamental understanding of nervous system functions, both under normal and pathological conditions. While the fabrication of current micro- and nano-electrodes has advanced our capabilities to perform long-term recordings, this has been at the expense of signal resolution due to low sealing ...

Modeling of the Singlet Oxygen Distribution in Photofrin-Photodynamic Therapy of the Plural Cavity

R. Penjweini [1], T. C. Zhu [1], M. M. Kim [1],
[1] Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Photofrin-mediated photodynamic therapy (PDT) is used after surgical resection at the University of Pennsylvania to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rate. When Photofrin is exposed to laser light at 630 nm in well-oxygenated tissue, it produces reacted singlet oxygen ([1O2]rx) that kills cancer cells. As [1O2]rx is imperative to PDT ...

Multiphysics Modeling of a Minimally Invasive Tissue Ablation Methodology

J. S. Crompton [1], J. Thomas [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Necrosis of human tissue can typically be obtained by exposure to temperatures below 40°C or above +50°C. However, inherent variability in tissue properties, the complexity of tissue response and dissipation of thermal energy by local perfusion or blood flow can make the development of routine, predictable in-vivo approaches to produce necrosis difficult. Although a number of thermal ablation ...

Passive and Active Deformation Processes of 3D Fibre-Reinforced Caricatures of Cardiovascular Tissues

A. Di Carlo[1], P. Nardinocchi[2], T. Svaton[3], and L. Teresi[1]

[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Dept. of Structural & Geotechnical Engineering, Università di Roma La Sapienza, Roma, Italy
[3]Dept. of Mathematics, University of West Bohemia, Pilsen, Czech Republic

In this paper, we present a mathematical model of contractile elastic solids meant to simulate various districts of the cardiovascular system, and based on the concepts of active deformation and embedded muscle fibres. Specifically, here we deal with the modeling of the gross mechanics of the Left Ventricle (LV) which is strictly related to its pump function. As is well known, the effectiveness ...

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

Temperature Excursions at the Pulp-Dentin Junction during the Curing of Light-Activated Dental Restorations

M. Jakubinek[1,2], C. Neill[1], C. Felix[3], R. Price[2,3], M. White[1,2]

[1]Departments of Chemistry and Physics, Dalhousie University, Halifax, NS, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, NS, Canada
[3]Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, Canada

Heat produced during the curing of light-activated dental restorations could damage the dental pulp. Given the prevalence of composite restorations and the importance of avoiding injury to the pulp, efforts should be made to minimize the temperature increase that occurs at the pulp-dentin junction during light-curing. In this investigation we develop and evaluate a COMSOL Multiphysics FEM tooth ...

Local Electroporation of Single Adherent Cells by Micro-Structured Needle Electrodes

K. K. Sriperumbudur[1], P. J. Koester[1], M. Stubbe[1], C. Tautorat[1], J. Held[2], W. Baumann[1], and J. Gimsa[1]
[1] University of Rostock, Chair of Biophysics, Gertrudenstr. 11a, 18057 Rostock, Germany
[2] Microsystem Material Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany

In spite of its low throughput, Patch-Clamp is the established method for intracellular measurements of the transmembrane potential. To address this problem, we have developed new biosensor-chips with micro-structured needle electrodes (MNEs). MNE-penetration of single cells growing on the MNE-tips leads to a situation comparable to the whole-cell mode in classical Patch Clamp. MNE-penetration ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...