Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.


Visualizza gli articoli presentati alla COMSOL Conference 2020

Bioscience and Bioengineeringx

Understanding the Role of Nanomaterials in DNA Biosensors Through Finite Element Analysis

J. C. Kumaradas[1], A. Zhang[2], Y. D. Davletshin[1]
[1]Ryerson University, Toronto, ON, Canada
[2]University of Waterloo, Waterloo, ON, Canada

Tremendous progress is being made in the integration of nanoparticles into micro-analytical systems for biosensing. These materials are shown to enhance the analyte capture capability of biosensing platforms. We have implemented a computational model that considers the sensor’s geometry, ... Per saperne di più

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

L. C. Zaragoza[1], B. Hondorp[2], M. A. Rossi[3]
[1]ITESM, Monterrey, Mexico
[2]Rush Medical College, Chicago, IL, USA
[3]Rush University Medical Center, Chicago, IL, USA

The goal of our work was to calculate a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element ... Per saperne di più

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive ... Per saperne di più

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a ... Per saperne di più

Generation of Lofted NURBS Curves for 3D Model Generation with COMSOL Multiphysics®

R.T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA

A key challenge to finding quantitative solutions to biological problems is to model the complex 3D geometry of naturally occurring structures. Model generation often starts from serial sections from CT or MRI scans, confocal microscopy, or physical sectioning. In addition, prior to V4 ... Per saperne di più

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, ... Per saperne di più

Singlet Oxygen Modeling for PDT Incorporating Local Vascular Oxygen Diffusion

T. C. Zhu[1], B. Liu[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent that kills cells during photodynamic therapy (PDT). Based on a previously-developed model, the distance-dependent reacted 1O2 can be numerically calculated using finite-element method. We improved the model to include microscopic kinetic ... Per saperne di più

Modeling Inertial Focusing in Straight and Curved Microfluidic Channels

J. Martel[1], N. Elabbasi[2], D. Quinn[2], J. Bergstrom[2], M. Toner[1]
[1]BioMEMS Resource Center, Massachusetts General Hospital, Boston, MA, USA
[2]Veryst Engineering, Needham, MA, USA

Inertial focusing is a promising microfluidic technique for separating and concentrating cells of interest, processes routinely utilized in many medical procedures. This phenomenon is characterized by suspended particles in a flow spontaneously migrating across streamlines to equilibrium ... Per saperne di più

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent ... Per saperne di più

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, ... Per saperne di più