Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Simulating Organogenesis in COMSOL Multiphysics®: Cell-based Signaling Models

D. Iber[1], J. Vollmer[1], D. Menshykau[1]
[1]Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

Most models of biological pattern formation are simulated on continuous domains even though cells are discrete objects that provide internal boundaries to the diffusion of regulatory components. In our previous papers on simulating organogenesis in COMSOL Multiphysics® (Germann et al COMSOL Multiphysics® Conf Procedings 2011; Menshykau and Iber, COMSOL Multiphysics® Conf Proceedings 2012) we ...

Blood Flow Patterns in a Patient Specific Right Coronary Artery with Multiple Stenoses - new

B. Liu[1]
[1]Department of Mathematics, Monmouth University, West Long Branch, NJ, USA

Atherosclerotic lesions preferentially develop in certain regions like bifurcations, branches, and bends [1, 2]. A possible explanation for such a preferential localization of atherosclerosis is that the geometry of the vessel influences the blood flow pattern. It suggests that the arterial geometry plays an important role in determining the localized blood flow information. Thus hemodynamic ...

Modeling the Behavior of Phased Arrays in Brain Tissue: Application to Deep Brain Stimulation

V. Valente[1], A. Demosthenous[1], and R. Bayford[2]

[1]Department of Electronic & Electrical Engineering, University College London, London, United Kingdom
[2]Department of Natural Sciences, Middlesex University, London, United Kingdom

Deep Brain Stimulation (DBS) is a therapeutic tool used for a number of neurological disorders including chronic pain, incontinence and movement disorders, such as Parkinson’s disease. DBS consists of the low-frequency stimulation of an area of the brain, known as basal ganglia. The stimulation is provided by clinical implant, consisting of a pulse generator and an electrode lead ...

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By solving the model using COMSOL, it was possible to predict the concentration of bacteria at points within the ...

The Effect of Cartilaginous Rings on Deposition by Convection, Brownian Diffusion and Electrostatics

H. Akerstedt
Luleå University of Technology, Luleå, Sweden

This paper presents a numerical study of the deposition of spherical charged nanoparticles caused by convection and Brownian diffusion in a pipe with a cartilaginous ring structure. The model is supposed to describe deposition of charged particles in the upper generations of the tracheobronchial tree of the human lung. The upper airways are characterized by a certain wall structure called ...

From customer requirement to product requirement with COMSOL

A.B. Nilsson
BD Medical - Medical Surgical Systems, Helsingborg, Sweden

Anders B Nilsson graduated M. Sc. in engineering physics from Lund University in Sweden. He has been working in the R&D department at BD Medical as principal engineer and project leader since 2005. He uses COMSOL for a wide range of functions, such as early concept development and qualification of products.

Simulating Organogenesis in COMSOL

D. Iber, D. Menshykau, and P. Germann
ETH Zürich
Department of Biosystems Science and Engineering
Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. Computational models can help to integrate available knowledge and to better understand the underlying regulatory logic. We are currently studying mechanistic models for the development of limbs, lungs, kidneys, and bone. We have tested a number of alternative methods to solve our spatio-temporal ...

A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

Kristian Dreij[1], Qasim Ali Chaudhry[2], Bengt Jernström[1], Ralf Morgenstern[1], and Michael Hanke[2]
[1]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
[2]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. ...

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging infants in adult coils. Two birdcage-type coils were loaded by a tissue model and their B1+ homogeneities ...

Simulation of Normal and Cancerous T-cell Membrane Electroporation - new

O. Henao[1], V. Gómez[1], I. De la Pava[1], J. Sánchez[1]
[1]Grupo Fisiología Celular y Aplicada, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

Electroporation is an increase of the cell membrane permeability due to the formation of aqueous pores in it when the cell is under the influence of an intense electric field [1][2]. The formation of such pores in the membrane can be used to enhance the uptake of chemotherapeutic drugs into the cell in a cancer treatment known as electrochemotherapy [3]. In some cases the direct experimental ...

Quick Search