In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Analyzing Drug Delivery and Osteoblast Growth on a Porous Scaffold in a Perfusion Bioreactor

A. Sun, and S. Murray
Dept. of Biomedical Engineering
UCLA, Los Angeles, CA

Implantable Collagen sponges are used in Spinal Surgery as Drug Delivery Scaffolds. An optimal concentration of growth factor that strikes a balance between bone growth and adverse diffusion effects is difficult to find. The porous sponge also serves as a scaffold for Osteoblast growth, and fluid shear has been shown to mediate biological effects on that cell type. We use COMSOL Multiphysics ...

Effect of a High Frequency Field on the Electric Double Layer Surrounding a Biomolecule in a Fluid - new

M. Riou[1], C. Maedler[1], S. Erramilli[1], P. Mohanty[1]
[1]Boston University, Boston, MA, USA

Biosensors based on silicon nanowires are of great interest for ultrasensitive biomolecular recognition of disease specific markers for early stage diagnosis [1]. However, there are limitations on the performance of these nanosensors in solutions at high ionic strength. This is because the electric field induced by the binding of biomolecule is partially screened on length-scales larger than the ...

Polymer Compositional Profile Controls By-Product Fate from Erodible Endovascular Scaffolds

T. Shazly, and J. Ferdous
Biomedical Eng., Mechanical Eng. Dept.
University of South Carolina
Columbia, SC

Erodible polymeric scaffolds can mitigate long-term risks associated with permanent implants currently used to treat ischemic artery disease. However, safe deployment of erodible scaffolds is predicated on understanding the interactions between evolved material by-products and local biological tissues. We developed an integrated computational model of polymeric scaffold degradation, by ...

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

Thermal-Optical Modeling of a Signal Enhancement Approach for Paper-Based Diagnostics

D. Gasperino [1]
[1] Intellectual Ventures Laboratory, Bellevue, WA, USA

INTRODUCTION: Point of care diagnostics aimed at low-resource settings need to be relatively simple, robust and low-cost. The most commonly-used diagnostic platform in these settings is the lateral flow assay (LFA). LFAs are paper-based immunoassays designed to perform on-strip binding with analytes in patient samples in order to generate a visual signal if disease-specific antigen is ...

Design of Multiple Ground System for Maternal Defibrillation - new

A. Jeremic[1], E. Khoshrowshahli[2]
[1]Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada
[2]Biomedical Engineering, McMaster University, Hamilton, ON, Canada

Although cardiac arrest may be statistically insignificant event financial and more important emotional costs in such cases are quite devastating. In this paper we study the effects of multiple grounding pads. Namely, we believe that by placing multiple pads in the lower abdominal part we would be able to decrease the current density that would be dissipated to fetus and amniotic ...

Virtual Thermal Ablation in the Head and Neck using COMSOL Multiphysics

U. Topaloglu[1], Y. Yan[2], P. Novak[2], P. Spring[3], J. Suen[3], and G. Shafirstein[3]
[1] Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[2]Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[3]Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

Thermal ablation in the head and neck requires accurate thermal dose delivery to target tissue while protecting the structure and function of nearby tissue and organs. In this study, we present a method that allows importing Computed Tomography (CT) scans to COMSOL, in order to model accurately the expected pathological outcomes prior to thermal ablation treatment. Thermal ablation of a virtual ...

Large Scale Invasion Of New Species And Of Genetic Information

O. Richter, F. Suhling, and S. Moenickes
Technische Universität Braunschweig, Germany

The spatial dynamics of the invasion of new species and genetic dispersal is studied under the presumption of rising temperature by using a coherent approach of coupled partial differential equations of the reaction diffusion type. The nonlinear reaction terms model the population dynamics, genetic exchange and competition. Temperature reaction norms of reproduction rates are conferred by a two ...

Search for a Suitable Numerical Model for Electrical Stimulation: from the Electric Double Layer to Electrokinetics, Confrontation with Impedance Measurements

P. Pham, R. Scapolan, C. Rubeck, and F. Dupont
CEA-LETI-MINATEC, Grenoble, France

Electrical Stimulation is widely used today for Deep Brain Stimulation treatments and retinal prostheses. The Electrical Double Layer formed at the interface between the electrode surface and the extracellular medium is considered thru the linear Helmholtz model and the nonlinear more realistic modified Poisson Boltzmann model. These different models, solved using COMSOL Multiphysics, are ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...