In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...

Modeling and Simulation of Thermal Runaway in Cylindrical 18650 Lithium-Ion Batteries

A. M. Melcher [1], C. Ziebert [1], B. Lei [1], M. Rohde [2], H. J. Seifert [2]
[1] Karlsruhe Institute of Technology, IAM-AWP, Karlsruhe, Germany
[2] Karlsruhe Institute of Technology, Karlsruhe, Germany

In this work the coupled electrochemical-thermal model for a lithium-ion battery (LIB) based on porous electrode theory has been extended with contributions coming from exothermic side reactions based on an Arrhenius law to model abuse mechanisms, which could lead to a thermal runaway. These extensions have been modeled with a constant fuel model and for specified current profiles and exterior ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting plates. The battery performance depends upon several parameters and its operating conditions. In this work we developed a model for a lithium iron phosphate battery and validated our results with experimental charge-discharge curves. We however note ...

Modeling the Electroplating of Hexavalent Chromium

N. Obaid[1], R. Sivakumaran[1], J. Lui[1], A. Okunade[1]
[1]University of Waterloo, Waterloo, ON, Canada

This project modeled an industrial chromium plating process for automotive components. The process was modeled via the COMSOL Multiphysics® Electrodeposition Module. The simulation examined the effect of solution conductivity, electrode spacing, and anode height utilizing a factorial design approach. A sensitivity analysis was used to study the effect of these variables on the thickness value at ...

Analysis of Electro-Thermal Hot Spot Formation in Li-Ion-Battery-Cells

W. Beckert[1], C. Freytag[1], T. Frölich[1], G. Fauser[1]
[1]Fraunhofer IKTS, Dresden, Germany

The presented model approach offers a computational efficient tool to analyze the influences of geometrical design details, material selection and operational conditions on the electro-thermal behavior of a full Li ion battery cell geometry. It considers typical aspects as anisotropic winding structure, electro-thermal coupling and nonlinear electrical characteristics for moderate computational ...

Modeling Galvanic Corrosion

E. Gutierrez-Miravete[1], M. Turner[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Galvanic corrosion is encountered in marine applications because one often has dissimilar metal joints and seawater acts as an electrolyte. One metal acts predominantly as anode and undergoes material dissolution while the other acts predominantly as cathode and is the site where a cathodic reaction takes place. Assuming a stagnant electrolyte, the equation governing the distribution of ...

Parameter Estimation in a Single Particle Model Using COMSOL Multiphysics® Software and MATLAB® Optimization

B. Rajabloo [1], M. Désilets [1], Y. Choquette [2],
[1] Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, QC, Canada
[2] Institut de recherche d’Hydro-Québec, Varennes, QC, Canada

When it comes to study the behavior of the secondary batteries, physics-based models are more representative of the real behaviour than equivalent circuit models, especially for the estimation of the life and capacity fading. On the other hand, the complexity and computational cost of sophisticated physics-based models like pseudo two-dimensional (P2D) models justify the use of more simplified ...

Transient Simulation of an Electrochemical Machining Process for Stamping and Extrusion Dies

M. Penzel [1], M. Hackert-Oschätzchen [2], M. Kreißig [1], M. Kowalick [1], M. Zinecker [1], A. Schubert [1], G. Meichsner [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Precise electrochemical machining (PEM) is a non-conventional machining technology, based on anodic dissolution of metallic work-pieces. In this study an additional extension of the precise electrochemical machining with a precise angle-controlled cylinder positioning is aimed. Due to the help of the angle-controlled cylinder positioning, with PEM e.g. stamping and extrusion dies can be ...