In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation - new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of transducer that is based upon poorly-configured FE models is unlikely to perform as expected and will almost ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Dynamics of Rotors on Hydrodynamic Bearings

R. Eling[1]
[1]Mitsubishi Turbocharger & Engine Europe, Almere, The Netherlands

This study presents a rotordynamic analysis of a rotor on hydrodynamic bearings using COMSOL Multiphysics®. In this paper, the complexity of the model is gradually increased. Starting point of the analysis is the modal analysis of the rotor in free-free conditions. A Reynolds model is set up to predict the film pressure distribution under shaft loading. Due to the cross coupling terms of the ...

Simulation of Piezoelectric Nanofibers for Harvesting Energy Applications - new

S. Rouabah[1], A. Chaabi[1]
[1]Electronics Department, Constantine University, Constantine, Algeria

In this work, we have taken a model which is simulated using COMSOL Multiphysics®. It was used as a tool to design, characterize and to simulate an example which is nanofibers based piezoelectric energy generators. The results are compared with other available sources but using with another materials. After applying a pressure on the top of surface of nanogenerator, the output parameters ...

Dynamic Structural Modelling of Wind Turbines Using COMSOL Multiphysics

C. Van der Woude, and S. Narasimhan
University of Waterloo, Waterloo, ON, Canada

This paper presents a study of a wind turbine subjected to wind and seismic loading, carried out using COMSOL Multiphysics. The dynamic properties and response of wind turbine structures are of interest, as recent developments in wind energy have led to the design and construction of increasingly large and flexible turbine structures. A typical turbine structure model was created in ...

Scale-up Design of Ultrasound Irradiator for Advanced Oxidation Process (AOP) Using COMSOL Multiphysics® Simulation

Z. Wei[1]
[1]The Ohio State University, Columbus, OH, USA

Ultrasound is a promising green technology for the advanced oxidation process (AOP) since it adds no chemicals to the treated water. In this paper, COMSOL Multiphysics® was used as a tool to design and characterize an ultrasound irradiator with multi-stepped configuration, which aims to overcome disadvantages of typical irradiators and to enhance contaminant removal in large-scale water ...

FEM Simulation for ‘Pulse-Echo’ Performances of an Ultrasound Imaging Linear Probe

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Pulse-echo FEM simulation is seldom found in literature for ultrasound imaging array probes, since the complete modeling of such device is extremely complicated. Nevertheless, the 2D FEM described in the present work was successful, thanks to the following design procedure (see figure): Two piezoacoustic models were employed, one for transmission of the pressure wave into the acoustic domain, ...

Design and Optimization of a High Performance Ultrasound Imaging Probe Through FEM and KLM Model

L. Spicci, and M. Cati
Esaote SpA
Florence, Italy

The present paper describes the development of a full FEM model for linear array high performance 5MHz ultrasound imaging transducer. As a preliminary design, a mono dimensional electro-acoustical KLM model was realized, then the complete FEM was developed and optimized. The optimized transducer was manufactured, so that agreement between transducer measured performances and simulation ...

SAW Sensors for Surgical Arm using Piezoelectric Devices

Rakesh Kumar Pati [1], SK Mohammed ali[1], Sakuntala Mahapatra[1], Millee Panigrahi[1]
[1]MEMS Design Centre, Dept. of ETC, Trident Academy of Technology, Bhubaneswar, Odisha, India

Despite of the existing successful clinical applications, however, the interaction, i.e. artificial sensing, between the robot and the patient is still very limited. With the help of various cameras, vision is almost the only feeling that a robot can have. In order to imitate the human skin, various signals e.g., the strength of pressure, change of strength, speed and acceleration should be ...

Laser-Ultrasonics Wave Generation and Propagation FE Model in Metallic Materials

A. Cavuto[1], G.M. Revel [1], M. Martarelli [2], F. Sopranzetti [2]
[1]Università Politecnica delle Marche, Ancona, Italy
[2]Università e-Campus, Novedrate (CO), Italy

A 2D axisymmetric model was considered in order to evaluate the propagation paths of the ultrasonic waves generated inside an aluminum plate sample due to a rapid thermal expansion produced by laser pulse. Laser Doppler Vibrometer is used to experimentally validate the numerical results of the wave propagation in the material. The presented numerical model is able to identify directivity ...

1 - 10 of 242 First | < Previous | Next > | Last