Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

3D Semiconductor Radiation Detectors for Medical Imaging

M. Ruat, E. Gros d'Aillon, J. Tabary, and L. Verger
LETI-CEA Recherche technologique, MINATEC, Grenoble, France

CdTe and GaAs 3D semiconductor radiation detectors for medical imaging have been simulated. This was done through coupling Monte-Carlo simulations of interacting of X- and γ-rays with matter (using PENELOPE) while computating the applied potential, weighting field, free charge carriers transport and electrodes Charge Induction Efficiency (CIE) with COMSOL Multiphysics. Since the continuity ...

Finite Element Approach for 2D Micromagnetic Systems

H. Szambolics1, L. Buda-Prejbeanu2, J. C. Toussaint1,2, and O. Fruchart1
1Institut Néel, CNRS-INPG-UJF, Grenoble, France
2Laboratoire SPINTEC, CEA-CNRS-INPG-UJF, Grenoble, France

The imbalance between the four fundamental magnetic interactions (the magneto-crystalline anisotropy, the exchange and magnetostatic interactions, and the Zeeman coupling) is responsible for a very large diversity of magneticbehaviors that researchers try to explore anduse for technical applications (data storage,sensors, memories, medical imaging …).In this work, a finite element formalism ...

Capacitance Computation of Multilayered and Multiconductor Interconnects Using Finite Element Method

S. Musa, and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

The development and analysis of interconnects in inhomogeneous structures such as very large scale integration chips, printed circuit boards, and multichip modules are essential for next-generation electronic products. In this paper, we illustrate fast and sufficiently accurate computation of capacitance matrices of multilayered and multiconductor interconnects applying the finite element ...

Gauss's Law; Teaching Platform Using the Magic Cube: Implementation by COMSOL Multiphysics

H. Ghali, and A. Hossam
Electrical Engineering Department, British University in Egypt, Cairo, Egypt

Most probably Gauss\'s law is considered as the first \"electromagnetic\" concept for early undergraduate physics and electromagnetic courses. In early study year, teaching Gauss’s law is usually performed based on two main components; 1) The use of simple symmetrical charge distributions where a correct expectation of the spatial behavior of the electric flux density is possible and 2) The use ...

Simulation and Verification of a Capacitive Proximity Sensor

T. Schlegl, and H. Zangl
Graz University of Technology
Graz, Austria

State of the art proximity sensors are most often based on optical or tactile methods. Although these sensor systems are widely used (e.g. clamping protection) the reveal several drawbacks. Most optical sensors need a line of side whereas tactile sensors cannot be used to determine a distance to an approaching object. Capacitive sensing technology has proven to be an interesting alternative to ...

Analysis of Dielectrophoretic Force by Using COMSOL

Taewoo Lee[1]
[1]Department of Biomedical Engineering, Yonsei University, Seoul, South Korea

Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. In this research, we analyze dielectrophoretic (DEP) force using a geometry containing two electrodes, one with SiO2 and one without, with a gap between them. The relevant governing equations include the DEP force, the electrohydrodynamic and corresponding ...

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads - new

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded with currents up to 400 kA. For this purpose, a test rig containing a high-voltage pulsed power supply and ...

Estudo Numérico da Eletroquimioterapia em Tumor Cutâneo com Diferentes Configurações de Eletrodos - new

G. Neves[1], D. Suzuki[1], J. Alvim[1], M. Rangel[2]
[1]Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
[2]Vet Câncer Oncologia Veterinária, São Paulo, SP, Brasil

A eletroquimioterapia é um tratamento de câncer que utiliza a combinação de agentes quimioterápicos e campos elétricos. A base teórica por trás dessa aplicação é a eletroporação. Esse fenômeno biológico consiste na abertura de poros na membrana celular devido à aplicação de pulsos elétricos. Este trabalho analisa o comportamento do campo elétrico gerado por pulsos ...

Simulation of a Voltage Controlled Resistor Mimicking the Geometry of a MOSFET Device with Graphite Channel - new

M. Bhattacharjee[1], N. Mandal[1], H. B. Nemade[1], D. Bandyopadhyay[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

A Voltage Controlled Resistor (VCR) is simulated by replacing the semiconductor channel of a MOSFET device by graphite and embedding Si nanoparticles near the insulator-channel interface. The change in output drain current is found to depend on the thickness and relative permittivity of the insulator film together with the loading of Si nanoparticles. A material with higher dielectric ...

The eggshell method for magnetic force computation

Nool, M., Lahaye, D.
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

The eggshell method was introduced by F. Henrotte as a novel magnetic force computation method. It allows computation of the force by integrating the magnetic stress tensor over a shell surrounding the body of interest. We investigate the numerical properties of this method for current carrying wires, and permanent magnets immersed in two-dimensional stationary magnetic fields, discretized by ...

Quick Search