In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Multiphysics Modeling of Warm-Air Drying of Potatoes Slices

S. Sandoval Torres[1], A. de Lourdes Allier González[1], L.L. Méndez Lagunas[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

In this work we solve a model to simulate the drying of potatoes slices. The model considers both the transport of free and vapor water by applying a mechanistic approach. The critical moisture point (CMP) was considered, since it is a transition zone and it represents the point where water saturation is near from cero and hygroscopic domain begins. The CMP divides the hygroscopic and non ...

Thermoacoustic Analysis of Combustion Instability Importing RANS Data

G. Campa[1], E. Cosatto[2], S. Camporeale[1]
[1]Politecnico di Bari, Bari, Italy
[2]Ansaldo Energia, Genova, Italy

A hybrid technique based on the use of the FEM and the transfer matrix method is used to identify the frequencies at which thermoacoustic instabilities are expected and the growth rate of the pressure oscillations at the onset of instability. The Helmholtz equation is used to model the combustion chamber and the classical ?-? formulation for the flame model is adopted. The gas turbine combustion ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Investigation of Hydraulic Fracture Re-Orientation Effects in Tight Gas Reservoirs

B. Hagemann[1], J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal-Zellerfeld, Germany

In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the ...

Electrochemical Impedance Spectroscopy of a LiFePO4/Li Half-Cell

M. Cugnet[1], I. Baghdadi[1], M. Perrin[1]
[1]INES - CEA, Grenoble, France

This study demonstrates that a multiphysics model of a LiFePO4/Li half-cell can be applied to simulate the impedance results from an EIS. However, it implies that the double layer capacitance has to be taken into account, since it is responsible of the semi-circle in the impedance spectrum. A 15 min simulation allows getting a complete spectrum of the half-cell impedance from 0.1 to 200 kHz. The ...

FEM Based Design and Simulation Tool for MRI Birdcage Coils Including Eigenfrequency Analysis

N. Gurler[1], Y. Ziya Ider[1]
[1]Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

Designing a Radio Frequency (RF) birdcage coil used in Magnetic Resonance Imaging (MRI) at high frequencies where the wavelength is comparable with the coil dimensions is a challenging task. Before construction of the coil, not only calculating the capacitance value which is necessary for the coil to resonate at the desired frequency but also geometrically modeling the coil in a 3D simulation ...

Solving a Two-Scale Model for Vacuum Drying by Using COMSOL Multiphysics

S. Sandoval Torres[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is solved to simulate vacuum drying of oakwood. A two scale model describes the physics of wood-water relations ...

Electromagnetic Characterization of Big Aperture Magnet Used in Particle Beam Cancer Treatment

J. Osorio Moreno[1], M. Pullia[1], C. Priano[1]
[1]Fondazione CNAO, Pavia, Italy

Resistive magnets are one of the principal components of ion medical accelerator systems used in heavy ion cancer treatment. To fulfill medical requirements, like the size of irradiation field and an uniform dose distribution, some magnets of the transport beam line may require large aperture and a large region where the magnetic field is within specifications (good field region). After a ...

Microscale Simulation of Nanoparticles Transport in Porous Media for Groundwater Remediation

F. Messina[1], M. Icardi[1], D. Machisio[2], R. Sethi[1]
[1]Politecnico di Torino - DIATI, Torino, Italy
[2]Politecnico di Torino - DISAT, Torino, Italy

Nanoscale zerovalent iron is a promising reagent for the remediation of contaminated groundwater. The aim of the study is to simulate the transport of iron nanoparticles and their interaction with the porous media, their attachment and deposition on the soil grains. The particles trajectories is determined by several forces, some of them are significance only close to grains surfaces where, ...