Presentazioni e Articoli Tecnici

In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Simulation de la capacité d’un micro-commutateur RF par ingénierie inverse

D. Peyrou
LAAS, Groupe M2D, Paris

La présentation repose sur l’analyse de l’influence de la rugosité du diélectrique sur la capacité à l’état bas.

Modeling the Coupled Mass Transfer Phenomena During Osmotic Dehydration of Fresh and Frozen Mango Tissues

J. Floury[1], Q.T. Pham[2], and A. Le Bail[3]
[1] UMR STLO–INRA–Agrocampus
[2] School of Chemical Engineering and Industrial Chemistry, UNSW
Sydney, Australia.

In this paper, we present a mathematical model for simulating the mass transfer, during the osmotic dehydration of mango cubes. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but accounts for the mass exchange across the cell membrane and the shrinkage of whole tissue.

Low Frequency Electromagnetic Wave Propagation in Large Cavities, Study of the Cavity of Titan after the Cassini-Huygens Mission

F. Simões, and M. Hamelin
CETP/IPSL-CNRS 4, Saint Maur, France

The propagation of low frequency electromagnetic waves in the cavity of celestial bopdies with ionospheres has been studied, namely for inferring thunderstorm and lightning activity. The measurement of resonant states provides useful information for the analysis of the electric environment in the cavity. We present a 3D finite element model of the cavity, compute the lowest eigenfrequencies ...

Modeling of Different Shaped Micro-Cantilevers Used as Chemical Sensors

G. Louarn, M. Collet, and S. Cuenot
Institut des Matériaux Jean Rouxel, Nantes

In this work, we present the modeling of V-shaped silicon micro-cantilevers. The sensitivity of different V-shaped silicon cantilevers is estimated, as a function of the geometrical dimensions of the cantilever.

Multiphysics Modelling of an Electromagnetic Horn Dedicated to a Neutrino Superbeam Facility

F. Osswald, and G. Gaudiot
IPHC, Univ. Louis Pasteur, Strasbourg

This paper presents thermo-mechanical and electromagnetic computational results in the time-harmonic and transient domains. This includes the stress analysis induced by the magnetic field and resulting pressure, the Joule heating with skin effects and the corresponding deformation.

A Tool for Studying the Ecology of Hydrosystems

D. Peyrard[1], Ph. Vervier[1], S. Sauvage[1], J.M. Sánchez-Pérez[1], and M. Quintard[2]
[1] Laboratoire d’Ecologie des Hydrosystèmes, Toulouse
[2] Institut de Mécanique des Fluides de Toulouse

The hyporheic zone is defined as an area where water and matter exchange through the sand, gravel, sediments and other permeable soils under and beside streams. Its impact on the hydro-system function is determined by the proportion of subsurface biogeochemical reactions and the fluxes of water exchanging with the hyporheic zone and flowing through the porous sediments. The objective of our ...

Thermal Exchange Modelling on Hydrogen Plasma Reactor Walls

A. Michau, F. Silva, K. Hassouni, and A. Gicquel
Laboratoire d’Ingénierie des Matériaux et des Hautes Pressions, Villetaneuse

A reduced equivalent plasma model is proposed for thermal dissociation of molecular hydrogen, which allows a detailed description of atomic hydrogen recombination. This model, implemented with COMSOL Multiphysics, also accounts for surface temperature and thermal exchange on cavity walls. A self-consistent model previously developed in our laboratory has enabled us to determine that, at ...

Quick Search

31 - 37 of 37 First | < Previous | Next > | Last