La Galleria delle Applicazioni raccoglie un'ampia varietà di modelli tutorial e di app dimostrative realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file dei modelli e delle app demo pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni.

Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.


Variably Saturated Flow and Transport—Sorbing Solute

In this example water ponded in a ring on the ground moves into a relatively dry soil column and carries a chemical with it. As it moves through the variably saturated soil column, the chemical attaches to solid particles, slowing the solute transport relative to the water. Additionally the chemical concentrations decay from biodegradation in both the liquid and the solid phase.

Aquifer Characterization

This model uses the Optimization interface to solve the inverse problem for determining the spatially variable hydraulic conductivity on a discretized quadratic grid from a number of aquifer pump tests. Because the number of observations is smaller than the number of unknown parameters, a geostatistical penalty term is used to discriminate between solutions with comparable fitness values. ...

Variably Saturated Flow

This example utilizes the Richards’ Equation interface to assess how well geophysical irrigation sensors see the true level of fluid saturation in variably saturated soils. The challenge to characterizing fluid movement in variably saturated porous media lies primarily in the need to describe how the capacity to transmit and store fluids changes as fluids enter and fill the pore space. ...

Terzaghi Compaction

Fluids that move through pore spaces in an aquifer or reservoir can shield the porous medium from stress because they bear part of the load from, for instance, overlying rocks, sediments, fluids, and buildings. Withdrawing fluids from the pore space increases the stress the solids bear, sometimes to the degree that the reservoir measurably compacts. The reduction in the pore space loops back and ...

Geothermal Doublet

This is one of the two models from the blog post about heat transfer in the subsurface: https://www.comsol.de/blogs/coupling-heat-transfer-subsurface-porous-media-flow/ Note: Poroelasticity is not included here.

11 - 15 of 15 First | < Previous | Next > | Last