La Galleria delle Applicazioni raccoglie un'ampia varietà di tutorial e di app dimostrative realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file dei modelli e delle app demo pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni.

Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.

### Differential Pumping

Differentially pumped vacuum systems use a small orifice or tube to connect two parts of a vacuum system that are at very different pressures. Such systems are necessary when processes run at higher pressures and are monitored by detectors that require UHV for operation. In this model, gas flow through a narrow tube and into a high vacuum chamber is approximated using an analytic expression for ...

### Ultra-high Vacuum, Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a process often used in the Semiconductor industry to grow layers of high-purity solid material on top of a wafer substrate. CVD is achieved using many different techniques and across a range of pressures from atmospheric, to ultrahigh vacuum (UHV/CVD). UHV/CVD is performed at pressures below 10-6 Pa (10-8 Torr), so gas transport is achieved by molecular flow ...

### Ion Implanter Evaluator

The Ion Implanter Evaluator app considers the design of an ion implantation system. Ion implantation is used extensively in the semiconductor industry to implant dopants into wafers. Within an ion implanter, ions generated within an ion source are accelerated by an electric field to achieve the desired implant energy. Ions of the correct charge state are selected by means of a separation ...

### Evaporator

This model shows how to compute the thickness of a thermally evaporated gold film. The thickness of the deposited film is computed both on the walls of the chamber and on the sample.

### Molecular Flow Through an S-Bend

This model computes the transmission probability through an s-bend geometry using both the angular coefficient method available in the Free Molecular Flow interface and a Monte Carlo method using the Mathematical Particle Tracing interface. The computed transmission probability by the two methods is in excellent agreement with less than a 1% difference. This model requires the Particle Tracing ...

### Molecular Flow Through a Microcapillary

Computing molecular flows in arbitrary geometries produces complex integral equations that are very difficult to compute analytically. Analytic solutions are, therefore, only available for simple geometries. One of the earliest problems solved was that of gas flow through tubes of arbitrary length, which was first treated correctly by Clausing. Later, the integral expressions he derived were ...

### Adsorption and Desorption of Water in a Load Lock Vacuum System

This model shows how to simulate the time-dependent adsorption and desorption of water in a vacuum system at low pressures. The water is introduced into the system when a gate valve to a load lock is opened and the subsequent migration and pumping of the water is modeled.

### Molecular Flow Through an RF Coupler

This model computes the transmission probability through an RF coupler using both the angular coefficient method available in the Free Molecular Flow interface and a Monte Carlo method using the Mathematical Particle Tracing interface. The computed transmission probability determined by the two methods is in excellent agreement with less than a 1% difference. This model requires the Particle ...

### Outgassing Pipes

This benchmark model computes the pressure in a system of outgassing pipes with a high aspect ratio. The results are compared with a 1D simulation and a Monte-Carlo simulation of the same system from the literature.

### Neutralization of a Proton Beam through a Charge Exchange Cell

Gas cells have several applications in the design of scientific instruments. A gas cell is used to define a high-pressure region within the instrument's main vacuum system. For example, in this application, note we are designing a high-pressure region 100 mm long, with an operating pressure of 1e-3 Torr inside the collision cell and a main vacuum system pressure of 1e-5 Torr. In mass ...