La Galleria delle Applicazioni raccoglie un'ampia varietà di tutorial e di app dimostrative realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file dei modelli e delle app demo pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni.

Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Generation of Random Surfaces

These examples demonstrate how to generate randomized geometric surfaces. The {:comsolmph} software provides a powerful set of built-in functions and operators, such as functions for uniform and Gaussian random distributions and a very useful sum operator. In the blog post associated with these files, "[How to Generate Random Surfaces in COMSOL Multiphysics](/blogs/how-to-generate-random ...

Prestressed Micromirror

One method of creating spring-like structures or inducing curvature in thin structures is to plate them to substrates that are under the influence of residual stresses. The plating process can control this stress even for similar materials. One such device is the electrostatically controlled micromirror. It is typically quite small, and arrays of such devices can be implemented in projectors. ...

Thermal Expansion in a MEMS Device

This model analyzes the thermal expansion in a MEMS device, such as a microgyroscope, where thermal expansion should be minimized. The device is made from the copper-beryllium alloy UNS C17500 and uses temperature-dependent material properties from the Material Library. The purpose of this model is to exemplify the use of the Material Library in COMSOL Multiphysics. This library contains more ...

Microresistor Beam

Microresistors allow for quick and accurate actuation or structural movement directly related to the electricity that is applied to them. Microresistors can be used in many applications where small perturbations or deflections are required to be applied to devices, almost instantaneously. The Microresistor Beam app illustrates the importance of fully coupled, multiphysics simulations. An ...

Microresistor Beam

This example illustrates the ability to couple thermal, electrical, and structural analysis in one model. This particular application moves a beam by passing a current through it; the current generates heat, and the temperature increase leads to displacement through thermal expansion. The model estimates how much current and increase in temperature are necessary to displace the beam. Although ...

Thickness Shear Mode Quartz Oscillator

AT cut quartz crystals are widely employed in a range of applications, from oscillators to microbalances. One of the important properties of the AT cut is that the resonant frequency of the crystal is temperature independent to first order. This is desirable in both mass sensing and timing applications. AT cut crystals vibrate in the thickness shear mode—an applied voltage across the faces of ...

Thermoelastic Damping in a MEMS Resonator

Thermoelastic damping, which arises when you subject a material to cyclic stress, is an important factor when designing MEMS resonators. The stress brings about deformation, where materials heat under compressive stress and cool under tensile stress. Thus, due to the resulting heat flux, energy is lost to bring about this damping. The magnitude of the energy loss depends on the vibrational ...

Disc Resonator Anchor Losses

This model shows how to compute the anchor loss limited quality factor of a diamond disc resonator. The resonator is anchored to the substrate by a polysilicon post and power is transmitted to the substrate through the post. A perfectly matched layer is used to represent the essentially infinite substrate. The model is based on a paper presented at the 2007 COMSOL conference in Grenoble: P. ...

Piezoelectric Valve

Piezoelectric valves are frequently employed in medical and laboratory applications due to their fast response times and quiet operation. Their energy efficient operation, also dissipates little heat, which is often important for these applications. This model shows how to model a piezoelectric valve in COMSOL. The valve is actuated by a stacked piezoelectric actuator. A hyper-elastic seal is ...

MEMS Pressure Sensor Drift Due to Hygroscopic Swelling

For their integration in microelectronic circuits, MEMS devices are bonded on printed circuit boards and connected with other devices. Then, the whole circuit is often covered with an epoxy mold compound (EMC) to protect the devices and their interconnects with the board. The epoxy polymers used for such applications are subject to moisture absorption and hygroscopic swelling, which can lead to ...